Suppr超能文献

大肠杆菌中MinD振荡的温度依赖性:在高温下快速运行

Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast.

作者信息

Touhami Ahmed, Jericho Manfred, Rutenberg Andrew D

机构信息

Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada.

出版信息

J Bacteriol. 2006 Nov;188(21):7661-7. doi: 10.1128/JB.00911-06. Epub 2006 Aug 25.

Abstract

We observed that the oscillation period of MinD within rod-like and filamentous cells of Escherichia coli varied by a factor of 4 in the temperature range from 20 degrees C to 40 degrees C. The detailed dependence was Arrhenius, with a slope similar to the overall temperature-dependent growth curve of E. coli. The detailed pattern of oscillation, including the characteristic wavelength in filamentous cells, remained independent of temperature. A quantitative model of MinDE oscillation exhibited similar behavior, with an activated temperature dependence of the MinE-stimulated MinD-ATPase rate.

摘要

我们观察到,在20摄氏度至40摄氏度的温度范围内,大肠杆菌杆状和丝状细胞内MinD的振荡周期变化了4倍。详细的依赖关系符合阿伦尼乌斯方程,其斜率与大肠杆菌整体温度依赖性生长曲线相似。振荡的详细模式,包括丝状细胞中的特征波长,与温度无关。MinDE振荡的定量模型表现出类似的行为,MinE刺激的MinD-ATP酶速率具有活化的温度依赖性。

相似文献

1
Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast.
J Bacteriol. 2006 Nov;188(21):7661-7. doi: 10.1128/JB.00911-06. Epub 2006 Aug 25.
3
Pattern formation within Escherichia coli: diffusion, membrane attachment, and self-interaction of MinD molecules.
Phys Rev Lett. 2004 Nov 26;93(22):228103. doi: 10.1103/PhysRevLett.93.228103. Epub 2004 Nov 23.
4
Min protein patterns emerge from rapid rebinding and membrane interaction of MinE.
Nat Struct Mol Biol. 2011 May;18(5):577-83. doi: 10.1038/nsmb.2037. Epub 2011 Apr 24.
6
Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli.
Mol Microbiol. 2010 Jan;75(2):499-512. doi: 10.1111/j.1365-2958.2009.07006.x. Epub 2009 Dec 16.
7
A multistranded polymer model explains MinDE dynamics in E. coli cell division.
Biophys J. 2007 Aug 15;93(4):1134-50. doi: 10.1529/biophysj.106.097162. Epub 2007 May 4.
8
Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells.
PLoS One. 2015 May 27;10(5):e0128148. doi: 10.1371/journal.pone.0128148. eCollection 2015.
9
High-Speed Atomic Force Microscopy Reveals the Inner Workings of the MinDE Protein Oscillator.
Nano Lett. 2018 Jan 10;18(1):288-296. doi: 10.1021/acs.nanolett.7b04128. Epub 2017 Dec 18.
10
Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021904. doi: 10.1103/PhysRevE.73.021904. Epub 2006 Feb 13.

引用本文的文献

1
Uropathogenic Escherichia coli proliferate as a coccoid morphotype inside human host cells.
PLoS Biol. 2025 Sep 3;23(9):e3003366. doi: 10.1371/journal.pbio.3003366. eCollection 2025 Sep.
2
Mechanistic origins of temperature scaling in the early embryonic cell cycle.
Nat Commun. 2025 Aug 28;16(1):8045. doi: 10.1038/s41467-025-62918-0.
3
Real-Time Imaging of the Mechanobactericidal Action of Colloidal Nanomaterials and Nanostructured Topographies.
Small Sci. 2023 Apr 5;3(5):2300002. doi: 10.1002/smsc.202300002. eCollection 2023 May.
4
Mechanistic origins of temperature scaling in the early embryonic cell cycle.
bioRxiv. 2025 Feb 4:2024.12.24.630245. doi: 10.1101/2024.12.24.630245.
5
Growth-dependent concentration gradient of the oscillating Min system in Escherichia coli.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202406107. Epub 2024 Dec 2.
6
Min oscillations in bacteria as real-time reporter of environmental challenges at the single-cell level.
Open Biol. 2023 Jul;13(7):230020. doi: 10.1098/rsob.230020. Epub 2023 Jul 26.
7
Mode selection mechanism in traveling and standing waves revealed by Min wave reconstituted in artificial cells.
Sci Adv. 2022 Jun 10;8(23):eabm8460. doi: 10.1126/sciadv.abm8460. Epub 2022 Jun 8.
8
Dynamics of the Bacillus subtilis Min System.
mBio. 2021 Apr 13;12(2):e00296-21. doi: 10.1128/mBio.00296-21.
9
The E. coli MinCDE system in the regulation of protein patterns and gradients.
Cell Mol Life Sci. 2019 Nov;76(21):4245-4273. doi: 10.1007/s00018-019-03218-x. Epub 2019 Jul 17.
10
Regulation of Pom cluster dynamics in Myxococcus xanthus.
PLoS Comput Biol. 2018 Aug 13;14(8):e1006358. doi: 10.1371/journal.pcbi.1006358. eCollection 2018 Aug.

本文引用的文献

1
ON THE CRITICAL THERMAL INCREMENT FOR THE LOCOMOTION OF A DIPLOPOD.
J Gen Physiol. 1924 Sep 20;7(1):123-36. doi: 10.1085/jgp.7.1.123.
2
Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021904. doi: 10.1103/PhysRevE.73.021904. Epub 2006 Feb 13.
4
The bacterial segrosome: a dynamic nucleoprotein machine for DNA trafficking and segregation.
Nat Rev Microbiol. 2006 Feb;4(2):133-43. doi: 10.1038/nrmicro1342.
5
Division accuracy in a stochastic model of Min oscillations in Escherichia coli.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):347-52. doi: 10.1073/pnas.0505825102. Epub 2005 Dec 30.
6
Spatial control of bacterial division-site placement.
Nat Rev Microbiol. 2005 Dec;3(12):959-68. doi: 10.1038/nrmicro1290.
7
Min-protein oscillations in round bacteria.
Phys Biol. 2004 Dec;1(3-4):229-35. doi: 10.1088/1478-3967/1/4/005.
8
Transcriptional response of Escherichia coli to temperature shift.
Biotechnol Prog. 2005 May-Jun;21(3):689-99. doi: 10.1021/bp049630l.
9
A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement.
Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6114-8. doi: 10.1073/pnas.0502037102. Epub 2005 Apr 19.
10
Pattern formation within Escherichia coli: diffusion, membrane attachment, and self-interaction of MinD molecules.
Phys Rev Lett. 2004 Nov 26;93(22):228103. doi: 10.1103/PhysRevLett.93.228103. Epub 2004 Nov 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验