Suppr超能文献

大肠杆菌中Min振荡随机模型的划分精度。

Division accuracy in a stochastic model of Min oscillations in Escherichia coli.

作者信息

Kerr Rex A, Levine Herbert, Sejnowski Terrence J, Rappel Wouter-Jan

机构信息

Computational Neurobiology Laboratory and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):347-52. doi: 10.1073/pnas.0505825102. Epub 2005 Dec 30.

Abstract

Accurate cell division in Escherichia coli requires the Min proteins MinC, MinD, and MinE as well as the presence of nucleoids. MinD and MinE exhibit spatial oscillations, moving from pole to pole of the bacterium, resulting in an average MinD concentration that is low at the center of the cell and high at the poles. This concentration minimum is thought to signal the site of cell division. Deterministic models of the Min oscillations reproduce many observed features of the system, including the concentration minimum of MinD. However, there are only a few thousand Min proteins in a bacterium, so stochastic effects are likely to play an important role. Here, we show that Monte Carlo simulations with a large number of proteins agree well with the results from a deterministic treatment of the equations. The location of minimum local MinD concentration is too variable to account for cell division accuracy in wild-type, but is consistent with the accuracy of cell division in cells without nucleoids. This finding confirms the need to include additional mechanisms, such as reciprocal interactions with the cell division ring or positioning of the nucleoids, to explain wild-type accuracy.

摘要

大肠杆菌中精确的细胞分裂需要Min蛋白MinC、MinD和MinE以及类核的存在。MinD和MinE表现出空间振荡,从细菌的一极移动到另一极,导致细胞中心的平均MinD浓度较低,而两极的浓度较高。这种浓度最小值被认为是细胞分裂位点的信号。Min振荡的确定性模型再现了该系统许多观察到的特征,包括MinD的浓度最小值。然而,细菌中只有几千个Min蛋白,因此随机效应可能起着重要作用。在这里,我们表明,对大量蛋白质进行的蒙特卡罗模拟与对方程进行确定性处理的结果非常吻合。野生型中局部MinD浓度最小值的位置变化太大,无法解释细胞分裂的准确性,但与没有类核的细胞中细胞分裂的准确性一致。这一发现证实,需要纳入其他机制,如与细胞分裂环的相互作用或类核的定位,来解释野生型的准确性。

相似文献

1
Division accuracy in a stochastic model of Min oscillations in Escherichia coli.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):347-52. doi: 10.1073/pnas.0505825102. Epub 2005 Dec 30.
4
Spatial control of the cell division site by the Min system in Escherichia coli.
Environ Microbiol. 2013 Dec;15(12):3229-39. doi: 10.1111/1462-2920.12119. Epub 2013 Apr 9.
5
Molecular Interactions of the Min Protein System Reproduce Spatiotemporal Patterning in Growing and Dividing Escherichia coli Cells.
PLoS One. 2015 May 27;10(5):e0128148. doi: 10.1371/journal.pone.0128148. eCollection 2015.
6
Mesoscale modeling technique for studying the dynamics oscillation of Min protein: pattern formation analysis with lattice Boltzmann method.
Comput Biol Med. 2009 May;39(5):412-24. doi: 10.1016/j.compbiomed.2009.02.003. Epub 2009 Apr 1.
7
MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli.
J Biol Chem. 2012 Nov 9;287(46):38835-44. doi: 10.1074/jbc.M112.407817. Epub 2012 Sep 25.
9
Noise-induced Min phenotypes in E. coli.
PLoS Comput Biol. 2006 Jun 30;2(6):e80. doi: 10.1371/journal.pcbi.0020080. Epub 2006 May 18.
10
Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Feb;73(2 Pt 1):021904. doi: 10.1103/PhysRevE.73.021904. Epub 2006 Feb 13.

引用本文的文献

1
A single-cell atlas of the murine limb skeleton integrating the developmental and adult stages.
Sci Rep. 2025 Jul 2;15(1):22514. doi: 10.1038/s41598-025-05277-6.
2
Transition from alternating stripes to alternating labyrinths in oscillatory media.
Phys Rev E. 2025 Mar;111(3):L032201. doi: 10.1103/PhysRevE.111.L032201.
3
Chemophoresis engine: A general mechanism of ATPase-driven cargo transport.
PLoS Comput Biol. 2022 Jul 25;18(7):e1010324. doi: 10.1371/journal.pcbi.1010324. eCollection 2022 Jul.
4
Morphological Phenotypes, Cell Division, and Gene Expression of under High Concentration of Sodium Sulfate.
Microorganisms. 2022 Jan 25;10(2):274. doi: 10.3390/microorganisms10020274.
5
Delayed global feedback in the genesis and stability of spatiotemporal excitation patterns in paced biological excitable media.
PLoS Comput Biol. 2020 Oct 5;16(10):e1007931. doi: 10.1371/journal.pcbi.1007931. eCollection 2020 Oct.
8
MCell-R: A Particle-Resolution Network-Free Spatial Modeling Framework.
Methods Mol Biol. 2019;1945:203-229. doi: 10.1007/978-1-4939-9102-0_9.
9
The Min-protein oscillations in : an example of self-organized cellular protein waves.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0111.
10
Threshold effect of growth rate on population variability of cell lengths.
R Soc Open Sci. 2017 Feb 22;4(2):160417. doi: 10.1098/rsos.160417. eCollection 2017 Feb.

本文引用的文献

1
Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins.
Phys Biol. 2005 Jun;2(2):89-97. doi: 10.1088/1478-3975/2/2/002.
2
Evidence for ectopic neurotransmission at a neuronal synapse.
Science. 2005 Jul 15;309(5733):446-51. doi: 10.1126/science.1108239.
3
A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement.
Proc Natl Acad Sci U S A. 2005 Apr 26;102(17):6114-8. doi: 10.1073/pnas.0502037102. Epub 2005 Apr 19.
4
Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer.
J Biol Chem. 2005 Jun 10;280(23):22549-54. doi: 10.1074/jbc.M500895200. Epub 2005 Apr 11.
5
Pattern formation within Escherichia coli: diffusion, membrane attachment, and self-interaction of MinD molecules.
Phys Rev Lett. 2004 Nov 26;93(22):228103. doi: 10.1103/PhysRevLett.93.228103. Epub 2004 Nov 23.
6
Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins.
J Bacteriol. 2004 Sep;186(17):5775-81. doi: 10.1128/JB.186.17.5775-5781.2004.
7
Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones.
Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12724-8. doi: 10.1073/pnas.2135445100. Epub 2003 Oct 20.
10
Pattern formation inside bacteria: fluctuations due to the low copy number of proteins.
Phys Rev Lett. 2003 Mar 28;90(12):128102. doi: 10.1103/PhysRevLett.90.128102. Epub 2003 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验