Raap J, Hollander J, Ovchinnikova T V, Swischeva N V, Skladnev D, Kiihne S
Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
J Biomol NMR. 2006 Aug;35(4):285-93. doi: 10.1007/s10858-006-9045-6. Epub 2006 Aug 9.
Interactions between (15)N-labelled peptides or proteins and lipids can be investigated using membranes aligned on a thin polymer film, which is rolled into a cylinder and inserted into the MAS-NMR rotor. This can be spun at high speed, which is often useful at high field strengths. Unfortuantely, substrate films like commercially available polycarbonate or PEEK produce severe overlap with peptide and protein signals in (13)C-MAOSS NMR spectra. We show that a simple house hold foil support allows clear observation of the carbonyl, aromatic and C(alpha) signals of peptides and proteins as well as the ester carbonyl and choline signals of phosphocholine lipids. The utility of the new substrate is validated in applications to the membrane active peptide zervamicin IIB. The stability and macroscopic ordering of thin PC10 bilayers was compared with that of thicker POPC bilayers, both supported on the household foil. Sidebands in the (31)P-spectra showed a high degree of alignment of both the supported POPC and PC10 lipid molecules. Compared with POPC, the PC10 lipids are slightly more disordered, most likely due to the increased mobilities of the shorter lipid molecules. This mobility prevents PC10 from forming stable vesicles for MAS studies. The (13)C-peptide peaks were selectively detected in a (13)C-detected (1)H-spin diffusion experiment. Qualitative analysis of build-up curves obtained for different mixing times allowed the transmembrane peptide in PC10 to be distinguished from the surface bound topology in POPC. The (13)C-MAOSS results thus independently confirms previous findings from (15)N spectroscopy [Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O'Neil, J.D.J. and Raap, J. (2001) Biochemistry, 40, 9428-9437]. In summary, application of house hold foil opens the possibility of measuring high resolution (13)C-NMR spectra of peptides and proteins in well ordered membranes, which are required to determine the secondary and supramolecular structures of membrane active peptides, proteins and aggregates.
利用排列在薄聚合物膜上的膜可以研究(15)N标记的肽或蛋白质与脂质之间的相互作用,该聚合物膜被卷成圆柱体并插入MAS-NMR转子中。它可以高速旋转,这在高场强下通常很有用。不幸的是,像市售聚碳酸酯或聚醚醚酮这样的基底膜在(13)C-MAOSS NMR光谱中会与肽和蛋白质信号产生严重重叠。我们表明,一种简单的家用箔片支撑物能够清晰观察到肽和蛋白质的羰基、芳香族和C(α)信号以及磷酸胆碱脂质的酯羰基和胆碱信号。这种新基底在膜活性肽zervamicin IIB的应用中得到了验证。将薄PC10双层膜的稳定性和宏观有序性与较厚的POPC双层膜进行了比较,两者都支撑在家用箔片上。(31)P光谱中的边带显示了支撑的POPC和PC10脂质分子的高度排列。与POPC相比,PC10脂质的无序程度略高,这很可能是由于较短脂质分子的流动性增加所致。这种流动性阻止了PC10形成用于MAS研究的稳定囊泡。在(13)C检测的(1)H自旋扩散实验中选择性地检测到了(13)C-肽峰。对不同混合时间获得的积累曲线进行定性分析,可以区分PC10中的跨膜肽和POPC中的表面结合拓扑结构。因此,(13)C-MAOSS结果独立证实了先前(15)N光谱学的发现[Bechinger, B., Skladnev, D.A., Ogrel, A., Li, X., Rogozhkina, E.V., Ovchinnikova, T.V., O'Neil, J.D.J.和Raap, J.(2001)Biochemistry, 40, 9428 - 9437]。总之,家用箔片的应用为测量排列良好的膜中肽和蛋白质的高分辨率((13)C-NMR光谱开辟了可能性,而这对于确定膜活性肽、蛋白质和聚集体的二级和超分子结构是必需的。