Suppr超能文献

Inhibition of nitric oxide synthase blocks N-methyl-D-aspartate-, quisqualate-, kainate-, harmaline-, and pentylenetetrazole-dependent increases in cerebellar cyclic GMP in vivo.

作者信息

Wood P L, Emmett M R, Rao T S, Cler J, Mick S, Iyengar S

机构信息

CNS Diseases Research, G. D. Searle & Co., St. Louis, Missouri.

出版信息

J Neurochem. 1990 Jul;55(1):346-8. doi: 10.1111/j.1471-4159.1990.tb08859.x.

Abstract

The synthesis of nitric oxide by brain slices has been demonstrated in several laboratories. In addition, in vitro studies have demonstrated stimulation of nitric oxide synthesis by excitatory amino acid receptor agonists. These data have led to the hypothesis that this readily diffusible "intercellular messenger molecule" acts to generate a cascade effect by activating guanylate cyclase in several cell types and thereby augment levels of the second messenger cyclic GMP (cGMP). Therefore, we evaluated this hypothesis in vivo, by testing the actions of the nitric oxide synthase inhibitor N-mono-methyl-L-arginine (NMMA) on elevations in level of mouse cerebellar cGMP generated by excitatory amino acid receptor agonists. The stimulatory effects of D-serine, quisqualate, and kainate were all found to be antagonized by this enzyme inhibitor. In addition, NMMA antagonized the increases in cerebellar cGMP level elicited by harmaline and pentylenetetrazole, pharmacological agents that augment endogenous excitatory amino acid transmission. Our data are, therefore, the first in vivo demonstration that nitric oxide is an important "messenger molecule" in the cerebellum, mediating the actions of kainate, quisqualate, and N-methyl-D-aspartate receptor agonists on guanylate cyclase. These data are consistent with previous in vitro findings with kainate and N-methyl-D-aspartate.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验