Suppr超能文献

非洲猪瘟病毒引发反式高尔基体网络的微管依赖性分散,并减缓膜蛋白向质膜的转运。

African swine fever virus causes microtubule-dependent dispersal of the trans-golgi network and slows delivery of membrane protein to the plasma membrane.

作者信息

Netherton Christopher L, McCrossan Mari-Clare, Denyer Michael, Ponnambalam Sreenivasan, Armstrong John, Takamatsu Haru-Hisa, Wileman Thomas E

机构信息

Pirbright Laboratory, Institute for Animal Health, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.

出版信息

J Virol. 2006 Nov;80(22):11385-92. doi: 10.1128/JVI.00439-06. Epub 2006 Sep 6.

Abstract

Viral interference with secretory cargo is a common mechanism for pathogen immune evasion. Selective down regulation of critical immune system molecules such as major histocompatibility complex (MHC) proteins enables pathogens to mask themselves from their host. African swine fever virus (ASFV) disrupts the trans-Golgi network (TGN) by altering the localization of TGN46, an organelle marker for the distal secretory pathway. Reorganization of membrane transport components may provide a mechanism whereby ASFV can disrupt the correct secretion and/or cell surface expression of host proteins. In the study reported here, we used the tsO45 temperature-sensitive mutant of the G protein of vesicular stomatitis virus to show that ASFV significantly reduces the rate at which the protein is delivered to the plasma membrane. This is linked to a general reorganization of the secretory pathway during infection and a specific, microtubule-dependent disruption of structural components of the TGN. Golgin p230 and TGN46 are separated into distinct vesicles, whereupon TGN46 is depleted. These data suggest that disruption of the TGN by ASFV can slow membrane traffic during viral infection. This may be functionally important because infection of macrophages with virulent isolates of ASFV increased the expression of MHC class I genes, but there was no parallel increase in MHC class I molecule delivery to the plasma membrane.

摘要

病毒对分泌性货物的干扰是病原体免疫逃逸的常见机制。对关键免疫系统分子(如主要组织相容性复合体(MHC)蛋白)的选择性下调使病原体能够躲避宿主的识别。非洲猪瘟病毒(ASFV)通过改变TGN46的定位来破坏反式高尔基体网络(TGN),TGN46是远端分泌途径的细胞器标志物。膜运输成分的重组可能为ASFV破坏宿主蛋白的正确分泌和/或细胞表面表达提供一种机制。在本研究中,我们使用水疱性口炎病毒G蛋白的tsO45温度敏感突变体来表明,ASFV显著降低了该蛋白递送至质膜的速率。这与感染期间分泌途径的普遍重组以及TGN结构成分的特定微管依赖性破坏有关。高尔基体蛋白p230和TGN46被分隔到不同的囊泡中,随后TGN46减少。这些数据表明,ASFV对TGN的破坏会减缓病毒感染期间的膜运输。这在功能上可能很重要,因为用ASFV强毒株感染巨噬细胞会增加MHC I类基因的表达,但MHC I类分子向质膜的递送并没有相应增加。

相似文献

2
The trans Golgi network is lost from cells infected with African swine fever virus.
J Virol. 2001 Dec;75(23):11755-65. doi: 10.1128/JVI.75.23.11755-11765.2001.
3
African swine fever virus infection disrupts centrosome assembly and function.
J Gen Virol. 2005 Mar;86(Pt 3):589-594. doi: 10.1099/vir.0.80623-0.
8
Regulation of host translational machinery by African swine fever virus.
PLoS Pathog. 2009 Aug;5(8):e1000562. doi: 10.1371/journal.ppat.1000562. Epub 2009 Aug 28.
9
The golgin GCC88 is required for efficient retrograde transport of cargo from the early endosomes to the trans-Golgi network.
Mol Biol Cell. 2007 Dec;18(12):4979-91. doi: 10.1091/mbc.e07-06-0622. Epub 2007 Oct 3.

引用本文的文献

1
Exploring antiviral strategies to combat African swine fever.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf044.
2
Immunoevasion strategies for African swine fever virus: Modulation of antigen presentation pathways.
Virulence. 2025 Dec;16(1):2541711. doi: 10.1080/21505594.2025.2541711. Epub 2025 Aug 15.
3
African Swine Fever Virus Host-Pathogen Interactions.
Subcell Biochem. 2023;106:283-331. doi: 10.1007/978-3-031-40086-5_11.
4
New perspective on African swine fever: a bibliometrics study and visualization analysis.
Front Vet Sci. 2023 May 17;10:1085473. doi: 10.3389/fvets.2023.1085473. eCollection 2023.
5
High-Risk Regions of African Swine Fever Infection in Mozambique.
Viruses. 2023 Apr 20;15(4):1010. doi: 10.3390/v15041010.
7
Adaptive Cellular Immunity against African Swine Fever Virus Infections.
Pathogens. 2022 Feb 20;11(2):274. doi: 10.3390/pathogens11020274.
8
Selective fragmentation of the trans-Golgi apparatus by Rickettsia rickettsii.
PLoS Pathog. 2020 May 18;16(5):e1008582. doi: 10.1371/journal.ppat.1008582. eCollection 2020 May.

本文引用的文献

2
Viral interference with MHC class I antigen presentation pathway: the battle continues.
Vet Immunol Immunopathol. 2005 Aug 15;107(1-2):1-15. doi: 10.1016/j.vetimm.2005.04.006.
4
African swine fever virus infection disrupts centrosome assembly and function.
J Gen Virol. 2005 Mar;86(Pt 3):589-594. doi: 10.1099/vir.0.80623-0.
7
Cholesterol loading induces a block in the exit of VSVG from the TGN.
Traffic. 2003 Nov;4(11):772-84. doi: 10.1034/j.1600-0854.2003.00134.x.
8
Viral mimicry of cytokines, chemokines and their receptors.
Nat Rev Immunol. 2003 Jan;3(1):36-50. doi: 10.1038/nri980.
9
The transitional ER defines a boundary for quality control in the secretion of tsO45 VSV glycoprotein.
Traffic. 2002 Nov;3(11):833-49. doi: 10.1034/j.1600-0854.2002.31108.x.
10
Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion.
Trends Microbiol. 2002 Jul;10(7):332-9. doi: 10.1016/s0966-842x(02)02393-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验