Suppr超能文献

健康研究中每日天气人群暴露估计计算方法的比较。

A comparison of methods for calculating population exposure estimates of daily weather for health research.

作者信息

Hanigan Ivan, Hall Gillian, Dear Keith B G

机构信息

School of Environmental Research, Charles Darwin University, Darwin, Northern Territory, 0909, Australia.

出版信息

Int J Health Geogr. 2006 Sep 13;5:38. doi: 10.1186/1476-072X-5-38.

Abstract

BACKGROUND

To explain the possible effects of exposure to weather conditions on population health outcomes, weather data need to be calculated at a level in space and time that is appropriate for the health data. There are various ways of estimating exposure values from raw data collected at weather stations but the rationale for using one technique rather than another; the significance of the difference in the values obtained; and the effect these have on a research question are factors often not explicitly considered. In this study we compare different techniques for allocating weather data observations to small geographical areas and different options for weighting averages of these observations when calculating estimates of daily precipitation and temperature for Australian Postal Areas. Options that weight observations based on distance from population centroids and population size are more computationally intensive but give estimates that conceptually are more closely related to the experience of the population.

RESULTS

Options based on values derived from sites internal to postal areas, or from nearest neighbour sites--that is, using proximity polygons around weather stations intersected with postal areas--tended to include fewer stations' observations in their estimates, and missing values were common. Options based on observations from stations within 50 kilometres radius of centroids and weighting of data by distance from centroids gave more complete estimates. Using the geographic centroid of the postal area gave estimates that differed slightly from the population weighted centroids and the population weighted average of sub-unit estimates.

CONCLUSION

To calculate daily weather exposure values for analysis of health outcome data for small areas, the use of data from weather stations internal to the area only, or from neighbouring weather stations (allocated by the use of proximity polygons), is too limited. The most appropriate method conceptually is the use of weather data from sites within 50 kilometres radius of the area weighted to population centres, but a simpler acceptable option is to weight to the geographic centroid.

摘要

背景

为了解暴露于天气条件下对人群健康结果可能产生的影响,需要在与健康数据相匹配的时空尺度上计算天气数据。从气象站收集的原始数据估算暴露值有多种方法,但采用一种技术而非另一种技术的理由、所得值差异的显著性以及这些差异对研究问题的影响,往往未得到明确考量。在本研究中,我们比较了将气象数据观测值分配到小地理区域的不同技术,以及在计算澳大利亚邮政区域日降水量和温度估计值时对这些观测值进行加权平均的不同选项。基于与人口中心的距离和人口规模对观测值进行加权的选项计算量更大,但从概念上讲,其给出的估计值与人群的实际体验更为接近。

结果

基于邮政区域内站点或最近邻站点得出的值的选项(即使用气象站周围与邮政区域相交的邻近多边形),在其估计值中往往包含较少站点的观测值,且缺失值很常见。基于质心半径50公里范围内站点的观测值并按与质心的距离对数据进行加权的选项给出的估计值更完整。使用邮政区域的地理质心得出的估计值与人口加权质心以及子单元估计值的人口加权平均值略有不同。

结论

为计算用于小区域健康结果数据分析的每日天气暴露值,仅使用区域内气象站的数据或邻近气象站的数据(通过使用邻近多边形分配)过于有限。从概念上讲,最合适的方法是使用距离区域半径50公里范围内站点的天气数据并按人口中心进行加权,但一个更简单且可接受的选项是按地理质心进行加权。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bc5/1592542/060d2a71c955/1476-072X-5-38-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验