O'Hara Laura, Han Gil-Soo, Peak-Chew Sew, Grimsey Neil, Carman George M, Siniossoglou Symeon
Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, CB2 2XY Cambridge, United Kingdom.
J Biol Chem. 2006 Nov 10;281(45):34537-48. doi: 10.1074/jbc.M606654200. Epub 2006 Sep 12.
Phosphorylation of the conserved lipin Pah1p/Smp2p in Saccharomyces cerevisiae was previously shown to control transcription of phospholipid biosynthetic genes and nuclear structure by regulating the amount of membrane present at the nuclear envelope (Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005) EMBO J. 24, 1931-1941). A recent report identified Pah1p as a Mg2+-dependent phosphatidate (PA) phosphatase that regulates de novo lipid synthesis (Han G.-S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218). In this work we use a combination of mass spectrometry and systematic mutagenesis to identify seven Ser/Thr-Pro motifs within Pah1p that are phosphorylated in vivo. We show that phosphorylation on these sites is required for the efficient transcriptional derepression of key enzymes involved in phospholipid biosynthesis. The phosphorylation-deficient Pah1p exhibits higher PA phosphatase-specific activity than the wild-type Pah1p, indicating that phosphorylation of Pah1p controls PA production. Opi1p is a transcriptional repressor of phospholipid biosynthetic genes, responding to PA levels. Genetic analysis suggests that Pah1p regulates transcription of these genes through both Opi1p-dependent and -independent mechanisms. We also provide evidence that derepression of phospholipid biosynthetic genes is not sufficient to induce the nuclear membrane expansion shown in the pah1delta cells.
先前的研究表明,酿酒酵母中保守的脂素Pah1p/Smp2p的磷酸化通过调节核膜处的膜量来控制磷脂生物合成基因的转录和核结构(Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005) EMBO J. 24, 1931 - 1941)。最近的一份报告将Pah1p鉴定为一种依赖Mg2+的磷脂酸(PA)磷酸酶,它调节从头脂质合成(Han G.-S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210 - 9218)。在这项工作中,我们结合质谱分析和系统诱变来鉴定Pah1p中在体内被磷酸化的七个Ser/Thr-Pro基序。我们表明,这些位点的磷酸化是磷脂生物合成中关键酶有效转录去抑制所必需的。磷酸化缺陷型Pah1p比野生型Pah1p表现出更高的PA磷酸酶特异性活性,表明Pah1p的磷酸化控制PA的产生。Opi1p是磷脂生物合成基因的转录阻遏物,对PA水平作出反应。遗传分析表明,Pah1p通过依赖Opi1p和不依赖Opi1p的机制调节这些基因的转录。我们还提供证据表明,磷脂生物合成基因的去抑制不足以诱导pah1delta细胞中所示的核膜扩张。