Suppr超能文献

通过酵母脂素Pah1p/Smp2p镁离子依赖性磷脂酸磷酸酶的磷酸化作用对磷脂合成的调控

Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase.

作者信息

O'Hara Laura, Han Gil-Soo, Peak-Chew Sew, Grimsey Neil, Carman George M, Siniossoglou Symeon

机构信息

Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, CB2 2XY Cambridge, United Kingdom.

出版信息

J Biol Chem. 2006 Nov 10;281(45):34537-48. doi: 10.1074/jbc.M606654200. Epub 2006 Sep 12.

Abstract

Phosphorylation of the conserved lipin Pah1p/Smp2p in Saccharomyces cerevisiae was previously shown to control transcription of phospholipid biosynthetic genes and nuclear structure by regulating the amount of membrane present at the nuclear envelope (Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005) EMBO J. 24, 1931-1941). A recent report identified Pah1p as a Mg2+-dependent phosphatidate (PA) phosphatase that regulates de novo lipid synthesis (Han G.-S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210-9218). In this work we use a combination of mass spectrometry and systematic mutagenesis to identify seven Ser/Thr-Pro motifs within Pah1p that are phosphorylated in vivo. We show that phosphorylation on these sites is required for the efficient transcriptional derepression of key enzymes involved in phospholipid biosynthesis. The phosphorylation-deficient Pah1p exhibits higher PA phosphatase-specific activity than the wild-type Pah1p, indicating that phosphorylation of Pah1p controls PA production. Opi1p is a transcriptional repressor of phospholipid biosynthetic genes, responding to PA levels. Genetic analysis suggests that Pah1p regulates transcription of these genes through both Opi1p-dependent and -independent mechanisms. We also provide evidence that derepression of phospholipid biosynthetic genes is not sufficient to induce the nuclear membrane expansion shown in the pah1delta cells.

摘要

先前的研究表明,酿酒酵母中保守的脂素Pah1p/Smp2p的磷酸化通过调节核膜处的膜量来控制磷脂生物合成基因的转录和核结构(Santos-Rosa, H., Leung, J., Grimsey, N., Peak-Chew, S., and Siniossoglou, S. (2005) EMBO J. 24, 1931 - 1941)。最近的一份报告将Pah1p鉴定为一种依赖Mg2+的磷脂酸(PA)磷酸酶,它调节从头脂质合成(Han G.-S., Wu, W. I., and Carman, G. M. (2006) J. Biol. Chem. 281, 9210 - 9218)。在这项工作中,我们结合质谱分析和系统诱变来鉴定Pah1p中在体内被磷酸化的七个Ser/Thr-Pro基序。我们表明,这些位点的磷酸化是磷脂生物合成中关键酶有效转录去抑制所必需的。磷酸化缺陷型Pah1p比野生型Pah1p表现出更高的PA磷酸酶特异性活性,表明Pah1p的磷酸化控制PA的产生。Opi1p是磷脂生物合成基因的转录阻遏物,对PA水平作出反应。遗传分析表明,Pah1p通过依赖Opi1p和不依赖Opi1p的机制调节这些基因的转录。我们还提供证据表明,磷脂生物合成基因的去抑制不足以诱导pah1delta细胞中所示的核膜扩张。

相似文献

1
Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase.
J Biol Chem. 2006 Nov 10;281(45):34537-48. doi: 10.1074/jbc.M606654200. Epub 2006 Sep 12.
3
Host Pah1p phosphatidate phosphatase limits viral replication by regulating phospholipid synthesis.
PLoS Pathog. 2018 Apr 12;14(4):e1006988. doi: 10.1371/journal.ppat.1006988. eCollection 2018 Apr.
6
Regulation of lipid droplet and membrane biogenesis by the acidic tail of the phosphatidate phosphatase Pah1p.
Mol Biol Cell. 2013 Jul;24(13):2124-33. doi: 10.1091/mbc.E13-01-0021. Epub 2013 May 8.
7
Yeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation.
J Biol Chem. 2014 Apr 4;289(14):9811-22. doi: 10.1074/jbc.M114.550103. Epub 2014 Feb 21.
9
The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme.
J Biol Chem. 2006 Apr 7;281(14):9210-8. doi: 10.1074/jbc.M600425200. Epub 2006 Feb 8.
10

引用本文的文献

1
Active site determinants of yeast Pah1 phosphatidate phosphatase activity and cellular functions.
J Biol Chem. 2025 Jul 17;301(8):110492. doi: 10.1016/j.jbc.2025.110492.
2
Seed-specific expression of phosphatidate phosphohydrolases increases soybean oil content and seed weight.
Biotechnol Biofuels Bioprod. 2025 Feb 24;18(1):23. doi: 10.1186/s13068-025-02620-x.
3
Lysosomal quality control Review.
Autophagy. 2025 Jul;21(7):1413-1432. doi: 10.1080/15548627.2025.2469206. Epub 2025 Feb 24.
4
Lipin phosphatidic acid phosphatases: Structure, function, regulation, and disease association.
Adv Biol Regul. 2025 May;96:101082. doi: 10.1016/j.jbior.2025.101082. Epub 2025 Feb 10.
5
Alterations in Lipid Saturation Trigger Remodeling of the Outer Mitochondrial Membrane.
bioRxiv. 2025 Jan 23:2025.01.20.633997. doi: 10.1101/2025.01.20.633997.
6
Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target.
Adv Biol Regul. 2025 Jan;95:101074. doi: 10.1016/j.jbior.2025.101074. Epub 2025 Jan 3.
7
Partitioning of fatty acids between membrane and storage lipids controls ER membrane expansion.
EMBO J. 2025 Feb;44(3):781-800. doi: 10.1038/s44318-024-00355-3. Epub 2025 Jan 3.
8
The antidepressant drug sertraline is a novel inhibitor of yeast Pah1 and human lipin 1 phosphatidic acid phosphatases.
J Lipid Res. 2025 Jan;66(1):100711. doi: 10.1016/j.jlr.2024.100711. Epub 2024 Nov 20.
10
The partitioning of fatty acids between membrane and storage lipids controls ER membrane expansion.
bioRxiv. 2024 Sep 5:2024.09.05.611378. doi: 10.1101/2024.09.05.611378.

本文引用的文献

1
The life cycle of neutral lipids: synthesis, storage and degradation.
Cell Mol Life Sci. 2006 Jun;63(12):1355-69. doi: 10.1007/s00018-006-6016-8.
2
Yeast nuclear envelope subdomains with distinct abilities to resist membrane expansion.
Mol Biol Cell. 2006 Apr;17(4):1768-78. doi: 10.1091/mbc.e05-09-0839. Epub 2006 Feb 8.
3
The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme.
J Biol Chem. 2006 Apr 7;281(14):9210-8. doi: 10.1074/jbc.M600425200. Epub 2006 Feb 8.
4
The nuclear envelope: form and reformation.
Curr Opin Cell Biol. 2006 Feb;18(1):108-16. doi: 10.1016/j.ceb.2005.12.004. Epub 2005 Dec 20.
5
Combining chemical genetics and proteomics to identify protein kinase substrates.
Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):17940-5. doi: 10.1073/pnas.0509080102. Epub 2005 Dec 5.
6
Global analysis of protein phosphorylation in yeast.
Nature. 2005 Dec 1;438(7068):679-84. doi: 10.1038/nature04187.
7
Lipid phosphate phosphatases and lipid phosphate signalling.
Biochem Soc Trans. 2005 Dec;33(Pt 6):1370-4. doi: 10.1042/BST0331370.
9
Pushing the envelope: structure, function, and dynamics of the nuclear periphery.
Annu Rev Cell Dev Biol. 2005;21:347-80. doi: 10.1146/annurev.cellbio.21.090704.151152.
10
Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis.
J Biol Chem. 2005 Sep 23;280(38):32883-9. doi: 10.1074/jbc.M503885200. Epub 2005 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验