Roberts David W, Aptula Aynur O, Patlewicz Grace
School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England.
Chem Res Toxicol. 2006 Sep;19(9):1228-33. doi: 10.1021/tx060102o.
Several recent (1999 onward) publications on skin sensitization to aldehydes and ketones, which can sensitize by covalent binding to skin protein via Schiff base formation, present QSARs based on the Taft sigma parameter to model reactivity and log P to model hydrophobicity. Here, all of the data are reanalyzed together in a stepwise self-consistent way using the parameters log P (octanol/water) and Sigmasigma, the latter being the sum of Taft sigma values for the two groups R and R' in RCOR'. A QSAR is derived: pEC3 = 1.12(+/-0.07) Sigmasigma + 0.42(+/-0.04) log P - 0.62(+/-0.13); n = 16 R(2) = 0.952 R(2)(adj) = 0.945 s = 0.12 F = 129.6, based on mouse local lymph node assay (LLNA) data for 11 aliphatic aldehydes, 1 alpha-ketoester and 4 alpha,beta-diketones. In developing this QSAR, an initial regression equation for a training set of 10 aldehydes was found to predict a test set consisting of the other 6 compounds. The QSAR is found to be well predictive for LLNA data on a series of alpha,gamma-diketones and also correctly predicts the nonsensitizing properties of simple dialkylketones. It is shown to meet all of the criteria of the OECD principles for applicability within regulatory practice. In view of the structural diversity within the sets of compounds considered here, the present findings confirm the view that within the mechanistic applicability domain the differences in sensitization potential are dependent solely on differences in chemical reactivity and partitioning.
最近(1999年起)有几篇关于皮肤对醛和酮致敏的文献,醛和酮可通过席夫碱形成与皮肤蛋白共价结合从而致敏,这些文献提出了基于塔夫脱σ参数来模拟反应性以及基于log P来模拟疏水性的定量构效关系(QSAR)。在此,使用参数log P(正辛醇/水)和Sigmasigma对所有数据进行逐步自洽的重新分析,后者是RCOR'中两个基团R和R'的塔夫脱σ值之和。得出了一个QSAR:pEC3 = 1.12(±0.07)Sigmasigma + 0.42(±0.04)log P - 0.62(±0.13);n = 16,R(2) = 0.952,R(2)(adj) = 0.945,s = 0.12,F = 129.6,该QSAR基于11种脂肪醛、1种α - 酮酯和4种α,β - 二酮的小鼠局部淋巴结试验(LLNA)数据。在建立这个QSAR时,发现一个由10种醛组成的训练集的初始回归方程能够预测由其他6种化合物组成的测试集。发现该QSAR对一系列α,γ - 二酮的LLNA数据具有良好的预测性,并且还能正确预测简单二烷基酮的非致敏特性。结果表明,它符合经合组织(OECD)原则在监管实践中的所有适用标准。鉴于本文所考虑的化合物组内结构的多样性,目前的研究结果证实了这样一种观点,即在机制适用范围内,致敏潜力的差异仅取决于化学反应性和分配的差异。