Suppr超能文献

评价用于预测皮肤致敏潜力的选定(QSARs)/专家系统。

An evaluation of selected (Q)SARs/expert systems for predicting skin sensitisation potential.

机构信息

a National Center for Computational Toxicology (NCCT) , US Environmental Protection Agency (US EPA), Research Triangle Park (RTP) , North Carolina , USA.

b School of Pharmacy , Liverpool John Moores University , Liverpool , UK.

出版信息

SAR QSAR Environ Res. 2018 Jun;29(6):439-468. doi: 10.1080/1062936X.2018.1455223. Epub 2018 Apr 20.

Abstract

Predictive testing to characterise substances for their skin sensitisation potential has historically been based on animal models such as the Local Lymph Node Assay (LLNA) and the Guinea Pig Maximisation Test (GPMT). In recent years, EU regulations, have provided a strong incentive to develop non-animal alternatives, such as expert systems software. Here we selected three different types of expert systems: VEGA (statistical), Derek Nexus (knowledge-based) and TIMES-SS (hybrid), and evaluated their performance using two large sets of animal data: one set of 1249 substances from eChemportal and a second set of 515 substances from NICEATM. A model was considered successful at predicting skin sensitisation potential if it had at least the same balanced accuracy as the LLNA and the GPMT had in predicting the other outcomes, which ranged from 79% to 86%. We found that the highest balanced accuracy of any of the expert systems evaluated was 65% when making global predictions. For substances within the domain of TIMES-SS, however, balanced accuracies for the two datasets were found to be 79% and 82%. In those cases where a chemical was within the TIMES-SS domain, the TIMES-SS skin sensitisation hazard prediction had the same confidence as the result from LLNA or GPMT.

摘要

预测测试是为了确定物质的皮肤致敏潜力,其历史上一直基于动物模型,如局部淋巴结测定(LLNA)和豚鼠最大剂量试验(GPMT)。近年来,欧盟法规强烈鼓励开发非动物替代品,如专家系统软件。在这里,我们选择了三种不同类型的专家系统:VEGA(统计)、Derek Nexus(基于知识)和 TIMES-SS(混合),并使用两套大型动物数据评估了它们的性能:一套来自 eChemportal 的 1249 种物质,另一套来自 NICEATM 的 515 种物质。如果一种模型在预测皮肤致敏潜力方面的平衡准确率至少与 LLNA 和 GPMT 在预测其他结果方面的准确率相同(范围为 79%至 86%),则认为该模型是成功的。我们发现,在进行全局预测时,评估的任何专家系统的最高平衡准确率为 65%。然而,对于 TIMES-SS 这两个数据集的物质,发现平衡准确率分别为 79%和 82%。在某些情况下,如果一种化学物质在 TIMES-SS 范围内,则 TIMES-SS 皮肤致敏危险预测与 LLNA 或 GPMT 的结果具有相同的可信度。

相似文献

1
An evaluation of selected (Q)SARs/expert systems for predicting skin sensitisation potential.
SAR QSAR Environ Res. 2018 Jun;29(6):439-468. doi: 10.1080/1062936X.2018.1455223. Epub 2018 Apr 20.
2
TIMES-SS--recent refinements resulting from an industrial skin sensitisation consortium.
SAR QSAR Environ Res. 2014;25(5):367-91. doi: 10.1080/1062936X.2014.900520. Epub 2014 May 1.
6
The activity of methacrylate esters in skin sensitisation test methods: A review.
Regul Toxicol Pharmacol. 2019 Jun;104:14-20. doi: 10.1016/j.yrtph.2019.02.014. Epub 2019 Feb 28.
8
Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance.
Regul Toxicol Pharmacol. 2013 Dec;67(3):468-85. doi: 10.1016/j.yrtph.2013.09.007. Epub 2013 Sep 30.
9
An evaluation of selected global (Q)SARs/expert systems for the prediction of skin sensitisation potential.
SAR QSAR Environ Res. 2007 Jul-Sep;18(5-6):515-41. doi: 10.1080/10629360701427872.

引用本文的文献

1
Requirements for Alternative In Vitro and In Silico Skin Models of Irritant and Allergic Contact Dermatitis.
Contact Dermatitis. 2025 Sep;93(3):187-203. doi: 10.1111/cod.14815. Epub 2025 May 30.
2
An overview of immunotoxicity in drug discovery and development.
Toxicol Lett. 2025 Jan;403:66-75. doi: 10.1016/j.toxlet.2024.11.007. Epub 2024 Nov 25.
3
Computational modelling and simulation for immunotoxicity prediction induced by skin sensitisers.
Comput Struct Biotechnol J. 2022 Oct 29;20:6172-6181. doi: 10.1016/j.csbj.2022.10.032. eCollection 2022.
4
Prediction of Skin Sensitization: ?
Front Pharmacol. 2021 May 4;12:655771. doi: 10.3389/fphar.2021.655771. eCollection 2021.
5
Human-Derived In Vitro Models Used for Skin Toxicity Testing Under REACh.
Handb Exp Pharmacol. 2021;265:3-27. doi: 10.1007/164_2020_368.
6
Evaluation of the global performance of eight in silico skin sensitization models using human data.
ALTEX. 2021;38(1):33-48. doi: 10.14573/altex.1911261. Epub 2020 May 7.
7
Progress in data interoperability to support computational toxicology and chemical safety evaluation.
Toxicol Appl Pharmacol. 2019 Oct 1;380:114707. doi: 10.1016/j.taap.2019.114707. Epub 2019 Aug 9.

本文引用的文献

2
Structure-Potency Relationships for Epoxides in Allergic Contact Dermatitis.
Chem Res Toxicol. 2017 Feb 20;30(2):524-531. doi: 10.1021/acs.chemrestox.6b00241. Epub 2017 Jan 25.
3
Evaluation of in silico tools to predict the skin sensitization potential of chemicals.
SAR QSAR Environ Res. 2017 Jan;28(1):59-73. doi: 10.1080/1062936X.2017.1278617. Epub 2017 Jan 20.
6
Current and Future Perspectives on the Development, Evaluation, and Application of in Silico Approaches for Predicting Toxicity.
Chem Res Toxicol. 2016 Apr 18;29(4):438-51. doi: 10.1021/acs.chemrestox.5b00388. Epub 2016 Jan 6.
7
Setting Occupational Exposure Limits for Chemical Allergens--Understanding the Challenges.
J Occup Environ Hyg. 2015;12 Suppl 1(sup1):S82-98. doi: 10.1080/15459624.2015.1072277.
8
Systematic evaluation of non-animal test methods for skin sensitisation safety assessment.
Toxicol In Vitro. 2015 Feb;29(1):259-70. doi: 10.1016/j.tiv.2014.10.018.
9
TIMES-SS--recent refinements resulting from an industrial skin sensitisation consortium.
SAR QSAR Environ Res. 2014;25(5):367-91. doi: 10.1080/1062936X.2014.900520. Epub 2014 May 1.
10
Electrophilic reactivity and skin sensitization potency of SNAr electrophiles.
Chem Res Toxicol. 2014 Feb 17;27(2):240-6. doi: 10.1021/tx400355n. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验