Gaspard S, Altenor S, Passe-Coutrin N, Ouensanga A, Brouers F
COVACHIMM, EA 3592 Université des Antilles et de la Guyane, BP 250, 97157 Pointe à Pitre Cedex, Guadeloupe.
Water Res. 2006 Oct;40(18):3467-77. doi: 10.1016/j.watres.2006.07.018. Epub 2006 Sep 18.
The fractal dimension of some commercial activated carbon (AC) was determined in the micro-, meso- and macropore range using mercury porosimetry and N(2) adsorption data. We studied the kinetic of adsorption of phenol, tannic acid and melanoidin on those ACs. The typical concentration-time profiles obtained here could be very well fitted by a general fractal kinetics equation q(n,alpha)(t)=q(e)[1-(1+(n-1)(t/tau(n,alpha))(alpha))(-1/(n-1))] deduced from recently new methods of analysis of reaction kinetics and relaxation. The parameter n is the reaction order, alpha is a fractional time index, q(e) measures the maximal quantity of solute adsorbed, and a "half-reaction time", tau(1/2), can be calculated, which is the time necessary to reach half of the equilibrium. The adsorption process on AC is clearly a heterogeneous process, taking place at the liquid-solid boundary, and the diffusion process occurs in a complex matrix with a fractal architecture as demonstrated here. In fact, these systems belong to what has been called "complex systems" and the fractal kinetic, which has been extensively applied to biophysics, can be a useful theoretical tool for study adsorption processes.
利用压汞法和N₂吸附数据,在微孔、中孔和大孔范围内测定了一些商用活性炭(AC)的分形维数。我们研究了苯酚、单宁酸和类黑素在这些活性炭上的吸附动力学。这里得到的典型浓度-时间曲线可以很好地用一个通用的分形动力学方程q(n,α)(t)=q(e)[1-(1+(n - 1)(t/τ(n,α))(α))(-1/(n - 1))]拟合,该方程是从最近新的反应动力学和弛豫分析方法推导出来的。参数n是反应级数,α是分数时间指数,q(e)衡量吸附溶质的最大量,并且可以计算出“半反应时间”τ(1/2),它是达到平衡一半所需的时间。活性炭上的吸附过程显然是一个非均相过程,发生在液-固界面,并且扩散过程发生在具有分形结构的复杂基质中,如此处所示。实际上,这些系统属于所谓的“复杂系统”,并且已广泛应用于生物物理学的分形动力学可以成为研究吸附过程的有用理论工具。