Nocca G, De Palma F, Minucci A, De Sole P, Martorana G E, Callà C, Morlacchi C, Gozzo M L, Gambarini G, Chimenti C, Giardina B, Lupi A
Biochemistry and Clinical Biochemistry Institute, School of Medicine, Catholic University, Rome, Italy.
J Dent. 2007 Mar;35(3):187-94. doi: 10.1016/j.jdent.2006.07.008. Epub 2006 Sep 18.
Methacrylic compounds such as 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and bisphenol A glycerolate (1 glycerol/phenol) dimethacrylate (Bis-GMA) are largely present in auto- or photopolymerizable composite resins. Since the polymerization reaction is never complete, these molecules are released into the oral cavity tissues and biological fluids where they could cause local adverse effects. The aim of this work was to verify the hypothesis that the biological effects of HEMA, TEGDMA and Bis-GMA - at a non-cytotoxic concentration - depend on the interaction with mitochondria and exert consequent alterations of energy metabolism, GSH levels and the related pathways in human promyelocytic cell line (HL-60).
The biological effects of methacrylic monomers were determined by analyzing the following parameters: GSH concentration, glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activity, oxygen and glucose consumption and lactate production along with cell differentiation and proliferation.
All monomers induced both cellular differentiation and decrease in oxygen consumption. Cells treated with TEGDMA and Bis-GMA showed a significant enhancement of glucose consumption and lactate production. TEGDMA and HEMA induced GSH depletion stimulating G6PDH and GR activity.
All the monomers under study affect the metabolism of HL-60 cells and show differentiating activity. Since alterations in cellular metabolism occurred at compound concentrations well below cytotoxic levels, the changes in energy metabolism and glutathione redox balance could be considered as potential mechanisms for inducing clinical and sub-clinical adverse effects and thus providing useful parameters when testing biocompatibility of dental materials.
甲基丙烯酸类化合物,如甲基丙烯酸羟乙酯(HEMA)、二缩三乙二醇二甲基丙烯酸酯(TEGDMA)和双酚A甘油醚(1甘油/苯酚)二甲基丙烯酸酯(Bis-GMA)大量存在于自聚合或光聚合复合树脂中。由于聚合反应永远不会完全完成,这些分子会释放到口腔组织和生物流体中,在那里它们可能会引起局部不良反应。这项工作的目的是验证以下假设:HEMA、TEGDMA和Bis-GMA在非细胞毒性浓度下的生物学效应取决于与线粒体的相互作用,并由此导致人早幼粒细胞系(HL-60)能量代谢、谷胱甘肽(GSH)水平及相关途径的改变。
通过分析以下参数来确定甲基丙烯酸单体的生物学效应:GSH浓度、葡萄糖-6-磷酸脱氢酶(G6PDH)和谷胱甘肽还原酶(GR)活性、氧气和葡萄糖消耗以及乳酸生成,同时观察细胞分化和增殖情况。
所有单体均诱导细胞分化并降低氧气消耗。用TEGDMA和Bis-GMA处理的细胞显示葡萄糖消耗和乳酸生成显著增加。TEGDMA和HEMA诱导GSH耗竭,刺激G6PDH和GR活性。
所有研究的单体均影响HL-60细胞的代谢并显示分化活性。由于细胞代谢改变发生在远低于细胞毒性水平的化合物浓度下,能量代谢和谷胱甘肽氧化还原平衡的变化可被视为诱导临床和亚临床不良反应的潜在机制,因此在测试牙科材料的生物相容性时可提供有用的参数。