Suppr超能文献

在临床病房中应用人工神经网络会帮助肾病学家预测促红细胞生成素的反应性吗?

Would artificial neural networks implemented in clinical wards help nephrologists in predicting epoetin responsiveness?

作者信息

Gabutti Luca, Lötscher Nathalie, Bianda Josephine, Marone Claudio, Mombelli Giorgio, Burnier Michel

机构信息

Division of Nephrology, Ospedale la Carità, Via Ospedale, 6600 Locarno, Switzerland.

出版信息

BMC Nephrol. 2006 Sep 18;7:13. doi: 10.1186/1471-2369-7-13.

Abstract

BACKGROUND

Due to its strong intra- and inter-individual variability, predicting the ideal erythropoietin dose is a difficult task. The aim of this study was to re-evaluate the impact of the main parameters known to influence the responsiveness to epoetin beta and to test the performance of artificial neural networks (ANNs) in predicting the dose required to reach the haemoglobin target and the monthly dose adjustments.

METHODS

We did a secondary analysis of the survey on Anaemia Management in dialysis patients in Switzerland; a prospective, non-randomized observational study, enrolling 340 patients of 26 centres and in order to have additional information about erythropoietin responsiveness, we included a further 92 patients from the Renal Services of the Ente Ospedaliero Cantonale, Bellinzona, Switzerland. The performance of ANNs in predicting the epoetin dose was compared with that of linear regressions and of nephrologists in charge of the patients.

RESULTS

For a specificity of 50%, the sensitivity of ANNs compared with linear regressions in predicting the erythropoietin dose to reach the haemoglobin target was 78 vs. 44% (P < 0.001). The ANN built to predict the monthly adaptations in erythropoietin dose, compared with the nephrologists' opinion, allowed to detect 48 vs. 25% (P < 0.05) of the patients treated with an insufficient dose with a specificity of 92 vs. 83% (P < 0.05).

CONCLUSION

In predicting the erythropoietin dose required for an individual patient and the monthly dose adjustments ANNs are superior to nephrologists' opinion. Thus, ANN may be a useful and promising tool that could be implemented in clinical wards to help nephrologists in prescribing erythropoietin.

摘要

背景

由于其强大的个体内和个体间变异性,预测理想的促红细胞生成素剂量是一项艰巨的任务。本研究的目的是重新评估已知影响对促红细胞生成素β反应性的主要参数的影响,并测试人工神经网络(ANN)在预测达到血红蛋白目标所需剂量和每月剂量调整方面的性能。

方法

我们对瑞士透析患者贫血管理调查进行了二次分析;这是一项前瞻性、非随机观察性研究,纳入了26个中心的340名患者,为了获得关于促红细胞生成素反应性的更多信息,我们还纳入了来自瑞士贝林佐纳州立医院肾脏科的另外92名患者。将ANN在预测促红细胞生成素剂量方面的性能与线性回归和负责患者的肾病学家的性能进行了比较。

结果

对于50%的特异性,ANN在预测达到血红蛋白目标的促红细胞生成素剂量方面与线性回归相比的敏感性为78%对44%(P<0.001)。与肾病学家的意见相比,用于预测促红细胞生成素剂量每月调整的ANN能够检测出48%对25%(P<0.05)接受剂量不足治疗的患者,特异性为92%对83%(P<0.05)。

结论

在预测个体患者所需的促红细胞生成素剂量和每月剂量调整方面,ANN优于肾病学家的意见。因此,ANN可能是一种有用且有前景的工具,可在临床病房实施,以帮助肾病学家开具促红细胞生成素处方。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/121c/1578551/fbd4a332bebd/1471-2369-7-13-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验