Crouzy S C, Sigworth F J
Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.
Biophys J. 1990 Sep;58(3):731-43. doi: 10.1016/S0006-3495(90)82416-4.
Distortion of the open-time or closed-time distributions of single channel currents, due to limited time resolution of the recording system, has been addressed by many authors. The calculation of the modified distributions generally involves the numerical inversion of a Laplace transform and is difficult to apply in fitting multistate kinetic schemes to data. Our approach is to introduce "virtual states" into the kinetic scheme, as suggested by Blatz and Magleby (1986. Biophys. J. 49:967-980) to account for missed events. To simplify the assignment of rate constants in multistate schemes we make use of Kienker's (1989. Proc. R. Soc. Lond. 236:296-309) theory to first transform schemes to uncoupled form. Our approach provides a good approximation to the exact solution, while allowing the observable dwell-time distributions, and also the second-order probability density functions, to be computed by standard matrix techniques.
由于记录系统的时间分辨率有限,单通道电流开放时间或关闭时间分布的失真问题已被许多作者探讨过。修正分布的计算通常涉及拉普拉斯变换的数值反演,并且难以应用于将多状态动力学方案拟合到数据中。我们的方法是按照布拉茨和马格利比(1986年。《生物物理学杂志》49:967 - 980)的建议,在动力学方案中引入“虚拟状态”,以解释遗漏事件。为了简化多状态方案中速率常数的赋值,我们利用金克(1989年。《伦敦皇家学会学报》236:296 - 309)的理论,首先将方案转换为非耦合形式。我们的方法为精确解提供了良好的近似,同时允许通过标准矩阵技术计算可观测的驻留时间分布以及二阶概率密度函数。