Suppr超能文献

精确且准确地推断单分子速率常数。

Precisely and Accurately Inferring Single-Molecule Rate Constants.

作者信息

Kinz-Thompson C D, Bailey N A, Gonzalez R L

机构信息

Columbia University, New York, NY, United States.

Columbia University, New York, NY, United States.

出版信息

Methods Enzymol. 2016;581:187-225. doi: 10.1016/bs.mie.2016.08.021. Epub 2016 Oct 7.

Abstract

The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state vs time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal vs time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restricts the precision of these approaches and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories.

摘要

生物分子系统的动力学可以通过计算控制单个生物分子的生物分子状态随时间轨迹(即状态轨迹)的随机速率常数来量化。为此,从观察单个生物分子获得的实验信号随时间轨迹(即信号轨迹)通常通过诸如阈值处理或隐马尔可夫建模等方法进行理想化处理,以生成状态轨迹。在此,我们讨论对信号轨迹进行理想化处理以及从所得状态轨迹计算随机速率常数的方法。重要的是,我们分析了信号轨迹的有限长度如何限制这些方法的精度,并展示了基于贝叶斯推理的这些方法版本如何能够严格确定这种精度。同样,我们分析了信号轨迹的有限长度和有限时间分辨率如何限制这些方法的准确性,并描述了通过考虑信号轨迹的有限长度和有限时间分辨率的影响来大幅提高这种准确性的方法。因此,总体而言,我们在此考虑的方法能够对精度进行严格评估,并显著提高准确性,从而可以从单分子信号轨迹计算随机速率常数。

相似文献

1
Precisely and Accurately Inferring Single-Molecule Rate Constants.
Methods Enzymol. 2016;581:187-225. doi: 10.1016/bs.mie.2016.08.021. Epub 2016 Oct 7.
2
Bayesian-Estimated Hierarchical HMMs Enable Robust Analysis of Single-Molecule Kinetic Heterogeneity.
Biophys J. 2019 May 21;116(10):1790-1802. doi: 10.1016/j.bpj.2019.02.031. Epub 2019 Apr 2.
3
Denoising single-molecule FRET trajectories with wavelets and Bayesian inference.
Biophys J. 2010 Jan 6;98(1):164-73. doi: 10.1016/j.bpj.2009.09.047.
4
Analyzing Single Molecule FRET Trajectories Using HMM.
Methods Mol Biol. 2017;1552:103-113. doi: 10.1007/978-1-4939-6753-7_7.
5
Observation and Analysis of RAD51 Nucleation Dynamics at Single-Monomer Resolution.
Methods Enzymol. 2018;600:201-232. doi: 10.1016/bs.mie.2017.12.008. Epub 2018 Feb 1.
7
Dissection of Interaction Kinetics through Single-Molecule Interaction Simulation.
Anal Chem. 2020 Sep 1;92(17):11582-11589. doi: 10.1021/acs.analchem.0c01014. Epub 2020 Aug 21.
8
Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories.
Biophys J. 2012 Sep 19;103(6):1315-24. doi: 10.1016/j.bpj.2012.07.047.
9
Putting Humpty-Dumpty Together: Clustering the Functional Dynamics of Single Biomolecular Machines Such as the Spliceosome.
Methods Enzymol. 2016;581:257-283. doi: 10.1016/bs.mie.2016.08.022. Epub 2016 Oct 13.
10
Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments.
Biophys J. 2014 Mar 18;106(6):1327-37. doi: 10.1016/j.bpj.2013.12.055.

引用本文的文献

1
Thermodynamic compensation to temperature extremes in B. subtilis vs T. maritima lysine riboswitches.
Biophys J. 2024 Oct 1;123(19):3331-3345. doi: 10.1016/j.bpj.2024.07.039. Epub 2024 Jul 31.
2
Increasing the accuracy of single-molecule data analysis using tMAVEN.
Biophys J. 2024 Sep 3;123(17):2765-2780. doi: 10.1016/j.bpj.2024.01.022. Epub 2024 Jan 24.
3
Atypical Protein Kinase C Promotes its own Asymmetric Localisation by Phosphorylating Cdc42 in the zygote.
bioRxiv. 2024 Jun 14:2023.10.27.563985. doi: 10.1101/2023.10.27.563985.
4
Membrane extraction in native lipid nanodiscs reveals dynamic regulation of Cdc42 complexes during cell polarization.
Biophys J. 2025 Mar 18;124(6):876-890. doi: 10.1016/j.bpj.2023.11.021. Epub 2023 Nov 23.
5
Increasing the accuracy of single-molecule data analysis using tMAVEN.
bioRxiv. 2024 Jan 21:2023.08.15.553409. doi: 10.1101/2023.08.15.553409.
6
Entropic control of the free-energy landscape of an archetypal biomolecular machine.
Proc Natl Acad Sci U S A. 2023 May 23;120(21):e2220591120. doi: 10.1073/pnas.2220591120. Epub 2023 May 15.
7
Advances in single-molecule junctions as tools for chemical and biochemical analysis.
Nat Chem. 2023 May;15(5):600-614. doi: 10.1038/s41557-023-01178-1. Epub 2023 Apr 27.
8
A particle size threshold governs diffusion and segregation of PAR-3 during cell polarization.
Cell Rep. 2022 Apr 12;39(2):110652. doi: 10.1016/j.celrep.2022.110652.
9
High-speed atomic force microscopy reveals a three-state elevator mechanism in the citrate transporter CitS.
Proc Natl Acad Sci U S A. 2022 Feb 8;119(6). doi: 10.1073/pnas.2113927119.
10
Rapid extraction and kinetic analysis of protein complexes from single cells.
Biophys J. 2021 Nov 16;120(22):5018-5031. doi: 10.1016/j.bpj.2021.10.011. Epub 2021 Oct 13.

本文引用的文献

3
Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments.
Biophys J. 2014 Mar 18;106(6):1327-37. doi: 10.1016/j.bpj.2013.12.055.
4
Hidden Markov analysis of trajectories in single-molecule experiments and the effects of missed events.
Chemphyschem. 2012 Mar;13(4):1079-86. doi: 10.1002/cphc.201100814. Epub 2012 Mar 5.
5
Single Molecule Analysis Research Tool (SMART): an integrated approach for analyzing single molecule data.
PLoS One. 2012;7(2):e30024. doi: 10.1371/journal.pone.0030024. Epub 2012 Feb 20.
6
Biological mechanisms, one molecule at a time.
Genes Dev. 2011 Jun 15;25(12):1205-31. doi: 10.1101/gad.2050011.
7
Graphical models for inferring single molecule dynamics.
BMC Bioinformatics. 2010 Oct 26;11 Suppl 8(Suppl 8):S2. doi: 10.1186/1471-2105-11-S8-S2.
8
Rate theories for biologists.
Q Rev Biophys. 2010 May;43(2):219-93. doi: 10.1017/S0033583510000120. Epub 2010 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验