Ross J V, Taimre T, Pollett P K
Department of Mathematics, University of Queensland, QLD, Australia.
Theor Popul Biol. 2006 Dec;70(4):498-510. doi: 10.1016/j.tpb.2006.08.001. Epub 2006 Aug 12.
We describe methods for estimating the parameters of Markovian population processes in continuous time, thus increasing their utility in modelling real biological systems. A general approach, applicable to any finite-state continuous-time Markovian model, is presented, and this is specialised to a computationally more efficient method applicable to a class of models called density-dependent Markov population processes. We illustrate the versatility of both approaches by estimating the parameters of the stochastic SIS logistic model from simulated data. This model is also fitted to data from a population of Bay checkerspot butterfly (Euphydryas editha bayensis), allowing us to assess the viability of this population.
我们描述了在连续时间内估计马尔可夫种群过程参数的方法,从而提高了它们在建模实际生物系统中的效用。提出了一种适用于任何有限状态连续时间马尔可夫模型的通用方法,并将其专门化为一种计算效率更高的方法,该方法适用于一类称为密度依赖马尔可夫种群过程的模型。我们通过从模拟数据中估计随机SIS逻辑模型的参数来说明这两种方法的通用性。该模型还拟合了来自海湾彩蝶(Euphydryas editha bayensis)种群的数据,使我们能够评估该种群的生存能力。