dos Santos Juliana Gomes, Fonseca Renata Garcia, Adabo Gelson Luis, dos Santos Cruz Carlos Alberto
Araraquara Dental School, Sao Paulo State University (UNESP), Sao Paulo, Brazil.
J Prosthet Dent. 2006 Sep;96(3):165-73. doi: 10.1016/j.prosdent.2006.07.002.
When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.
This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.
Fifty cylindrical specimens (9 x 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond II) and 50 in feldspathic porcelain (Noritake). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received 1 of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), CoJet Sand/Z100 (CJ), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or CoJet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with x30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.
On metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). On porcelain, the mean shear bond strength values of each group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.23(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.
The bond strength for the metal substrate was significantly higher using the CJ system. For porcelain, SB, CJ, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P<.05).
This study suggests that when fracture involves only feldspathic porcelain, any of the evaluated systems may be used, since the fracture occurred on the porcelain substrate and not on the bond interface of porcelain-restorative material. However, for the nickel-chromium alloy tested, the CoJet Sand system showed the best results for repair.
当金属烤瓷修复体上的陶瓷贴面发生临床骨折时,如果能够修复,就可以避免或推迟重新制作。有许多不同的陶瓷修复材料可供选择,而粘结强度数据对于预测特定修复系统的成功至关重要。
本研究评估了应用于金属和瓷上的金属烤瓷修复体不同修复系统的剪切粘结强度。
用镍铬合金(Vera Bond II)制作50个圆柱形试件(9×3mm),用长石质瓷(Noritake)制作50个。将金属(M)和瓷(P)试件嵌入聚氯乙烯(PVC)环中,并接受以下粘结和树脂复合材料修复系统之一(n = 10):Clearfil SE Bond/Clearfil AP-X(CL)、Bistite II DC/Palfique(BT)、CoJet Sand/Z100(CJ)、Scotchbond Multipurpose Plus/Z100(SB)(对照组)或CoJet Sand加Scotchbond Multipurpose Plus/Z100(CJSB)。试件在37℃蒸馏水中储存24小时,进行热循环(5℃至55℃循环1000次),然后在37℃储存8天。在机械试验机上以0.5mm/min的十字头速度对金属或陶瓷试件与修复系统之间进行剪切粘结试验。将平均剪切粘结强度值(MPa)进行单因素方差分析和Tukey真实显著性差异检验(α = 0.05)。在30倍放大的立体显微镜下检查每个试件,并将破坏模式分为粘结性、内聚性或两者结合。
在金属上,各组的平均剪切粘结强度值如下:MCL,18.40±2.88(b);MBT,8.57±1.00(d);MCJ,25.24±3.46(a);MSB,16.26±3.09(bc);MCJSB,13.11±1.24(c)。在瓷上,各组的平均剪切粘结强度值如下:PCL,16.91±2.22(b);PBT,18.04±3.23(ab);PCJ,19.54±3.77(ab);PSB,21.05±3.22(a);PCJSB,16.18±1.71(b)。在每个基底内,相同的上标字母表示各组之间无显著差异。
使用CJ系统时,金属基底的粘结强度显著更高。对于瓷,SB、CJ和BT系统显示出最高的剪切粘结强度值,并且与CL和CJSB相比,只有SB有显著差异(P<0.05)。
本研究表明,当骨折仅累及长石质瓷时,由于骨折发生在瓷基底而非瓷修复材料的粘结界面上,因此可以使用任何一种评估系统。然而,对于所测试的镍铬合金,CoJet Sand系统在修复方面显示出最佳结果。