Guigon Emmanuel, Baraduc Pierre, Desmurget Michel
INSERM U742, Action Neuroimagerie Modelisation, Université Pierre et Marie Curie, Boîte 23, 9 quai Saint-Bernard, 75005 Paris, France.
J Neurophysiol. 2007 Jan;97(1):331-47. doi: 10.1152/jn.00290.2006. Epub 2006 Sep 27.
The nervous system controls the behavior of complex kinematically redundant biomechanical systems. How it computes appropriate commands to generate movements is unknown. Here we propose a model based on the assumption that the nervous system: 1) processes static (e.g., gravitational) and dynamic (e.g., inertial) forces separately; 2) calculates appropriate dynamic controls to master the dynamic forces and progress toward the goal according to principles of optimal feedback control; 3) uses the size of the dynamic commands (effort) as an optimality criterion; and 4) can specify movement duration from a given level of effort. The model was used to control kinematic chains with 2, 4, and 7 degrees of freedom [planar shoulder/elbow, three-dimensional (3D) shoulder/elbow, 3D shoulder/elbow/wrist] actuated by pairs of antagonist muscles. The muscles were modeled as second-order nonlinear filters and received the dynamics commands as inputs. Simulations showed that the model can quantitatively reproduce characteristic features of pointing and grasping movements in 3D space, i.e., trajectory, velocity profile, and final posture. Furthermore, it accounted for amplitude/duration scaling and kinematic invariance for distance and load. These results suggest that motor control could be explained in terms of a limited set of computational principles.
神经系统控制着复杂的运动学冗余生物力学系统的行为。其如何计算生成运动的适当指令尚不清楚。在此,我们基于以下假设提出一个模型:1)神经系统分别处理静态(如重力)和动态(如惯性)力;2)根据最优反馈控制原理计算适当的动态控制,以掌控动态力并朝着目标前进;3)将动态指令的大小(努力程度)用作最优性标准;4)能够根据给定的努力程度指定运动持续时间。该模型用于控制由拮抗肌对驱动的具有2、4和7个自由度的运动链[平面肩部/肘部、三维(3D)肩部/肘部、3D肩部/肘部/腕部]。肌肉被建模为二阶非线性滤波器,并接收动态指令作为输入。模拟结果表明,该模型能够定量再现三维空间中指向和抓握运动的特征,即轨迹、速度分布和最终姿势。此外,它还解释了距离和负载的幅度/持续时间缩放以及运动学不变性。这些结果表明,运动控制可以用一组有限的计算原理来解释。