Page Michael J, Di Cera Enrico
Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
Physiol Rev. 2006 Oct;86(4):1049-92. doi: 10.1152/physrev.00008.2006.
Metal complexation is a key mediator or modifier of enzyme structure and function. In addition to divalent and polyvalent metals, group IA metals Na+ and K+ play important and specific roles that assist function of biological macromolecules. We examine the diversity of monovalent cation (M+)-activated enzymes by first comparing coordination in small molecules followed by a discussion of theoretical and practical aspects. Select examples of enzymes that utilize M+ as a cofactor (type I) or allosteric effector (type II) illustrate the structural basis of activation by Na+ and K+, along with unexpected connections with ion transporters. Kinetic expressions are derived for the analysis of type I and type II activation. In conclusion, we address evolutionary implications of Na+ binding in the trypsin-like proteases of vertebrate blood coagulation. From this analysis, M+ complexation has the potential to be an efficient regulator of enzyme catalysis and stability and offers novel strategies for protein engineering to improve enzyme function.
金属络合作用是酶结构和功能的关键介质或调节剂。除了二价和多价金属外,IA族金属Na⁺和K⁺也发挥着重要且特定的作用,协助生物大分子发挥功能。我们首先通过比较小分子中的配位情况,然后讨论理论和实践方面,来研究单价阳离子(M⁺)激活的酶的多样性。以利用M⁺作为辅因子(I型)或变构效应剂(II型)的酶为例,说明Na⁺和K⁺激活的结构基础,以及与离子转运体的意外联系。推导了用于分析I型和II型激活的动力学表达式。总之,我们探讨了脊椎动物血液凝固中类胰蛋白酶中Na⁺结合的进化意义。通过该分析,M⁺络合作用有可能成为酶催化和稳定性的有效调节剂,并为蛋白质工程提供新策略以改善酶的功能。