Suppr超能文献

具有显式时频先验的同步似然性。

Synchronization likelihood with explicit time-frequency priors.

作者信息

Montez T, Linkenkaer-Hansen K, van Dijk B W, Stam C J

机构信息

Department of Clinical Neurophysiology and MEG Centre, VU University Medical Center, Amsterdam, The Netherlands.

出版信息

Neuroimage. 2006 Dec;33(4):1117-25. doi: 10.1016/j.neuroimage.2006.06.066. Epub 2006 Oct 3.

Abstract

Cognitive processing requires integration of information processed simultaneously in spatially distinct areas of the brain. The influence that two brain areas exert on each others activity is usually governed by an unknown function, which is likely to have nonlinear terms. If the functional relationship between activities in different areas is dominated by the nonlinear terms, linear measures of correlation may not detect the statistical interdependency satisfactorily. Therefore, algorithms for detecting nonlinear dependencies may prove invaluable for characterizing the functional coupling in certain neuronal systems, conditions or pathologies. Synchronization likelihood (SL) is a method based on the concept of generalized synchronization and detects nonlinear and linear dependencies between two signals (Stam, C.J., van Dijk, B.W., 2002. Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets. Physica D, 163: 236-241.). SL relies on the detection of simultaneously occurring patterns, which can be complex and widely different in the two signals. Clinical studies applying SL to electro- or magnetoencephalography (EEG/MEG) signals have shown promising results. In previous implementations of the algorithm, however, a number of parameters have lacked a rigorous definition with respect to the time-frequency characteristics of the underlying physiological processes. Here we introduce a rationale for choosing these parameters as a function of the time-frequency content of the patterns of interest. The number of parameters that can be arbitrarily chosen by the user of the SL algorithm is thereby decreased from six to two. Empirical evidence for the advantages of our proposal is given by an application to EEG data of an epileptic seizure and simulations of two unidirectionally coupled Hénon systems.

摘要

认知处理需要整合在大脑空间上不同区域同时处理的信息。两个脑区对彼此活动施加的影响通常由一个未知函数控制,该函数可能包含非线性项。如果不同区域活动之间的功能关系由非线性项主导,线性相关度量可能无法令人满意地检测到统计上的相互依赖性。因此,用于检测非线性依赖性的算法可能被证明对于表征某些神经元系统、状况或病理中的功能耦合非常有价值。同步似然性(SL)是一种基于广义同步概念的方法,用于检测两个信号之间的非线性和线性依赖性(Stam, C.J., van Dijk, B.W., 2002. Synchronization likelihood: An unbiased measure of generalized synchronization in multivariate data sets. Physica D, 163: 236 - 241.)。SL依赖于对同时出现模式的检测,这两个信号中的模式可能很复杂且差异很大。将SL应用于脑电图(EEG)或脑磁图(MEG)信号的临床研究已显示出有前景的结果。然而,在该算法以前的实现中,一些参数对于潜在生理过程的时频特性缺乏严格定义。在此,我们介绍一种根据感兴趣模式的时频内容选择这些参数的基本原理。由此,SL算法用户可任意选择的参数数量从六个减少到两个。通过将其应用于癫痫发作的EEG数据以及对两个单向耦合的Hénon系统进行模拟,给出了支持我们提议优势的经验证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验