Franco R, Lluis C, Canela E I, Mallol J, Agnati L, Casadó V, Ciruela F, Ferré S, Fuxe K
Molecular Neurobiology Unit, Department of Biochemistry and Molecular Biology, IDIBAPS (Institut d'Investigacions Biomèdiques August Pi i Sunyer), Universitat de Barcelona, Barcelona, Spain.
J Neural Transm (Vienna). 2007 Jan;114(1):93-104. doi: 10.1007/s00702-006-0566-7. Epub 2006 Oct 6.
The molecular basis for the known intramembrane receptor-receptor interactions among heptahelical receptors (G protein coupled receptors, GPCR) was postulated to be heteromerization based on receptor subtype specific interactions between different types of homomers of GPCR. Adenosine and dopamine receptors in the basal ganglia have been fundamental to demonstrate the existence of receptor heteromers and the functional consequences of such molecular interactions. The heterodimer is only one type of heteromeric complex and the evidence is equally compatible with the existence of higher order heteromeric complexes, where also adapter proteins such as homer proteins and scaffolding proteins can exist, assisting in the process of linking the GPCR and ion channel receptors together in a receptor mosaic that may have special integrative value and may constitute the molecular basis for learning and memory. Heteromerization of D(2) dopamine and A(2A) adenosine receptors is reviewed by Fuxe in another article in this special issue. Here, heteromerization between D(1) dopamine and A(1) adenosine receptors is reviewed. Heteromers formed by dopamine D(1) and D(2) receptors and by adenosine A(1) and A(2A) receptors also occur in striatal cells and open new perspectives to understand why two receptors with apparently opposite effects are expressed in the same neuron and in the nerve terminals. The role of accessory proteins also capable of interacting with receptor-receptor heteromers in regulating the traffic and the molecular physiology of these receptors is also discussed. Overall, the knowledge of the reason why such complex networks of receptor-receptor and receptor-protein interactions occur in striatal cells is crucial to develop new strategies to combat neurological and neuropsychiatric diseases.
基于G蛋白偶联受体(GPCR)不同类型同聚体之间的受体亚型特异性相互作用,七螺旋受体(G蛋白偶联受体)之间已知的膜内受体 - 受体相互作用的分子基础被假定为异源二聚化。基底神经节中的腺苷和多巴胺受体对于证明受体异源二聚体的存在以及这种分子相互作用的功能后果至关重要。异二聚体只是异源复合的一种类型,并且有证据同样支持高阶异源复合物的存在,其中也可能存在诸如homer蛋白和支架蛋白等衔接蛋白,它们有助于在可能具有特殊整合价值且可能构成学习和记忆分子基础的受体镶嵌体中将GPCR和离子通道受体连接在一起。Fuxe在本期特刊的另一篇文章中综述了D(2)多巴胺受体和A(2A)腺苷受体的异源二聚化。在此,综述了D(1)多巴胺受体和A(1)腺苷受体之间的异源二聚化。由多巴胺D(1)和D(2)受体以及腺苷A(1)和A(2A)受体形成的异源二聚体也存在于纹状体细胞中,并为理解为什么具有明显相反作用的两种受体在同一神经元和神经末梢中表达开辟了新的视角。还讨论了能够与受体 - 受体异源二聚体相互作用的辅助蛋白在调节这些受体的运输和分子生理学中的作用。总体而言,了解纹状体细胞中为何会出现如此复杂的受体 - 受体和受体 - 蛋白相互作用网络对于开发对抗神经和神经精神疾病的新策略至关重要。