Heppner David E, Gherman Benjamin F, Tolman William B, Cramer Christopher J
Department of Chemistry and Supercomputer Institute, University of Minnesota, Minneapolis, MN 55455, USA.
Dalton Trans. 2006 Oct 28(40):4773-82. doi: 10.1039/b608980a. Epub 2006 Aug 25.
The finding that dioxygen binds end-on to the Cu(B) site in the crystal structure of a precatalytic complex of peptidylglycine alpha-hydroxylating monooxygenase has spurred the search for biomimetic model complexes exhibiting the same dioxygen coordination. Recent work has not only indicated that sterically hindered beta-diketiminate ligands (L(1)) could support side-on 1 : 1 Cu-O(2) adducts, but also that an end-on L(1)Cu(THF)O(2) structure occurs as an unstable intermediate in the oxygenation mechanism of the Cu(I) complex. In this work, density functional theory and multireference methods are used to determine the potential of ancillary ligands, X, other than THF to yield thermodynamically stable end-on L(1)CuXO(2) species. A diverse set of ligands X, comprising phosphines, thiophene, cyclic ethers, acetonitrile, para-substituted pyridines, N-heterocyclic carbenes, and ligands bearing hydrogen bond donors, has been considered in order to identify ligand characteristics which energetically favor end-on L(1)CuXO(2) over: a) reversion to the Cu(I) complex and dioxygen, b) isomerization to side-on L(1)CuXO(2), and c) decay to L(1)CuO(2) and X. Ancillary ligands with judiciously chosen degrees and orientation of steric bulk and which bear potential hydrogen bond donors to an end-on bound dioxygen moiety most favor oxygenation of L(1)CuX to yield end-on L(1)CuXO(2). Conversion to the side-on isomer can be deterred through the use of a sufficiently bulky ligand X, such as one that is at least the size of a 5-membered ring. Loss of X to give L(1)CuO(2) can be made prohibitively endergonic by employing ligands X which are highly electron donating and which backbond strongly with and sigma-donate significantly to copper.
在肽基甘氨酸α-羟基化单加氧酶预催化复合物的晶体结构中,发现双氧以端基方式结合到Cu(B)位点,这激发了人们对具有相同双氧配位的仿生模型复合物的探索。最近的研究不仅表明空间位阻较大的β-二酮亚胺配体(L(1))可以支持侧面1:1的Cu-O₂加合物,还表明端基L(1)Cu(THF)O₂结构在Cu(I)配合物的氧化机制中作为不稳定中间体出现。在这项工作中,使用密度泛函理论和多参考方法来确定除THF之外的辅助配体X产生热力学稳定的端基L(1)CuXO₂物种的潜力。为了确定在能量上有利于端基L(1)CuXO₂而不是以下情况的配体特征,考虑了一组多样的配体X,包括膦、噻吩、环醚、乙腈、对位取代吡啶、N-杂环卡宾以及带有氢键供体的配体:a) 还原为Cu(I)配合物和双氧,b) 异构化为侧面L(1)CuXO₂,以及c) 分解为L(1)CuO₂和X。具有精心选择的空间位阻程度和取向并且带有与端基结合的双氧部分潜在氢键供体的辅助配体最有利于L(1)CuX的氧化以产生端基L(1)CuXO₂。通过使用足够大的配体X,例如至少为五元环大小的配体,可以阻止转化为侧面异构体。通过使用高度供电子且与铜强烈反馈键合并显著σ-供电子的配体X,可以使X失去以生成L(1)CuO₂的过程具有极高的吸能性。