Suppr超能文献

阴离子反转电位的降低破坏了脊髓I层神经元放电频率的抑制性控制:探寻神经性疼痛的生物物理基础。

Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain.

作者信息

Prescott Steven A, Sejnowski Terrence J, De Koninck Yves

机构信息

Computational Neurobiology Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.

出版信息

Mol Pain. 2006 Oct 13;2:32. doi: 10.1186/1744-8069-2-32.

Abstract

BACKGROUND

Reduction of the transmembrane chloride gradient in spinal lamina I neurons contributes to the cellular hyperexcitability producing allodynia and hyperalgesia after peripheral nerve injury. The resultant decrease in anion reversal potential (i.e. shift in Eanion to less negative potentials) reduces glycine/GABAA receptor-mediated hyperpolarization, but the large increase in membrane conductance caused by inhibitory input can nonetheless shunt concurrent excitatory input. Without knowing the relative contribution of hyperpolarization and shunting to inhibition's modulation of firing rate, it is difficult to predict how much net disinhibition results from reduction of Eanion. We therefore used a biophysically accurate lamina I neuron model to investigate quantitatively how changes in Eanion affect firing rate modulation.

RESULTS

Simulations reveal that even a small reduction of Eanion compromises inhibitory control of firing rate because reduction of Eanion not only decreases glycine/GABAA receptor-mediated hyperpolarization, but can also indirectly compromise the capacity of shunting to reduce spiking. The latter effect occurs because shunting-mediated modulation of firing rate depends on a competition between two biophysical phenomena: shunting reduces depolarization, which translates into reduced spiking, but shunting also shortens the membrane time constant, which translates into faster membrane charging and increased spiking; the latter effect predominates when average depolarization is suprathreshold. Disinhibition therefore occurs as both hyperpolarization- and shunting-mediated modulation of firing rate are subverted by reduction of Eanion. Small reductions may be compensated for by increased glycine/GABAA receptor-mediated input, but the system decompensates (i.e. compensation fails) as reduction of Eanion exceeds a critical value. Hyperexcitability necessarily develops once disinhibition becomes incompensable. Furthermore, compensation by increased glycine/GABAA receptor-mediated input introduces instability into the system, rendering it increasingly prone to abrupt decompensation and even paradoxical excitation.

CONCLUSION

Reduction of Eanion dramatically compromises the inhibitory control of firing rate and, if compensation fails, is likely to contribute to the allodynia and hyperalgesia associated with neuropathic pain. These data help explain the relative intractability of neuropathic pain and illustrate how it is important to choose therapies not only based on disease mechanism, but based on quantitative understanding of that mechanism.

摘要

背景

脊髓I层神经元跨膜氯离子梯度的降低会导致细胞兴奋性过高,从而在周围神经损伤后产生异常性疼痛和痛觉过敏。由此导致的阴离子反转电位降低(即E阴离子向较不负极性的偏移)会减少甘氨酸/GABAA受体介导的超极化,但抑制性输入引起的膜电导大幅增加仍可分流同时存在的兴奋性输入。在不了解超极化和分流对抑制性调节放电率的相对贡献的情况下,很难预测E阴离子降低会导致多少净去抑制。因此,我们使用一个生物物理精确的I层神经元模型来定量研究E阴离子的变化如何影响放电率调节。

结果

模拟结果表明,即使E阴离子有小幅降低也会损害对放电率的抑制控制,因为E阴离子的降低不仅会减少甘氨酸/GABAA受体介导的超极化,还会间接损害分流减少放电的能力。后一种效应的发生是因为分流介导的放电率调节取决于两种生物物理现象之间的竞争:分流减少去极化,这会转化为放电减少,但分流也会缩短膜时间常数,这会转化为更快的膜充电和放电增加;当平均去极化高于阈值时,后一种效应占主导。因此,去抑制的发生是因为E阴离子的降低破坏了超极化和分流介导的放电率调节。小幅降低可能会通过增加甘氨酸/GABAA受体介导的输入来补偿,但当E阴离子的降低超过临界值时,系统会失代偿(即补偿失败)。一旦去抑制变得无法补偿,必然会出现兴奋性过高。此外,通过增加甘氨酸/GABAA受体介导的输入进行补偿会给系统引入不稳定性,使其越来越容易突然失代偿,甚至出现反常兴奋。

结论

E阴离子的降低会显著损害对放电率的抑制控制,如果补偿失败,很可能会导致与神经性疼痛相关的异常性疼痛和痛觉过敏。这些数据有助于解释神经性疼痛相对难以治疗的原因,并说明不仅要根据疾病机制,还要根据对该机制的定量理解来选择治疗方法是多么重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/607e/1624821/9bfeb85cd8a2/1744-8069-2-32-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验