Stein Andrew M, Demuth Tim, Mobley David, Berens Michael, Sander Leonard M
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA.
Biophys J. 2007 Jan 1;92(1):356-65. doi: 10.1529/biophysj.106.093468. Epub 2006 Oct 13.
Glioblastoma, the most malignant form of brain cancer, is responsible for 23% of primary brain tumors and has extremely poor outcome. Confounding the clinical management of glioblastomas is the extreme local invasiveness of these cancer cells. The mechanisms that govern invasion are poorly understood. To gain insight into glioblastoma invasion, we conducted experiments on the patterns of growth and dispersion of U87 glioblastoma tumor spheroids in a three-dimensional collagen gel. We studied two different cell lines, one with a mutation to the EGFR (U87DeltaEGFR) that is associated with increased malignancy, and one with an endogenous (wild-type) receptor (U87WT). We developed a continuum mathematical model of the dispersion behaviors with the aim of identifying and characterizing discrete cellular mechanisms underlying invasive cell motility. The mathematical model quantitatively reproduces the experimental data, and indicates that the U87WT invasive cells have a stronger directional motility bias away from the spheroid center as well as a faster rate of cell shedding compared to the U87DeltaEGFR cells. The model suggests that differences in tumor cell dispersion may be due to differences in the chemical factors produced by cells, differences in how the two cell lines remodel the gel, or different cell-cell adhesion characteristics.
胶质母细胞瘤是脑癌中最恶性的一种形式,占原发性脑肿瘤的23%,预后极差。这些癌细胞的极端局部侵袭性给胶质母细胞瘤的临床治疗带来了困扰。目前对其侵袭机制了解甚少。为深入了解胶质母细胞瘤的侵袭过程,我们对U87胶质母细胞瘤肿瘤球体在三维胶原凝胶中的生长和扩散模式进行了实验。我们研究了两种不同的细胞系,一种是表皮生长因子受体(EGFR)发生突变(U87DeltaEGFR)且与恶性程度增加相关的细胞系,另一种是具有内源性(野生型)受体(U87WT)的细胞系。我们建立了一个关于扩散行为的连续数学模型,旨在识别和描述侵袭性细胞运动背后的离散细胞机制。该数学模型定量地再现了实验数据,并表明与U87DeltaEGFR细胞相比,U87WT侵袭性细胞具有更强的远离球体中心的定向运动偏向以及更快的细胞脱落速率。该模型表明,肿瘤细胞扩散的差异可能是由于细胞产生的化学因子不同、两种细胞系重塑凝胶的方式不同或细胞间黏附特性不同所致。