Khain Evgeniy, Sander Leonard M
Department of Physics and Michigan Center for Theoretical Physics, The University of Michigan, Ann Arbor, Michigan 48109, USA.
Phys Rev Lett. 2006 May 12;96(18):188103. doi: 10.1103/PhysRevLett.96.188103. Epub 2006 May 11.
We study the in vitro dynamics of the malignant brain tumor glioblastoma multiforme. The growing tumor consists of a dense proliferating zone and an outer less dense invasive region. Experiments with different types of cells show qualitatively different behavior: one cell line invades in a spherically symmetric manner, but another gives rise to branches. We formulate a model for this sort of growth using two coupled reaction-diffusion equations for the cell and nutrient concentrations. When the ratio of the nutrient and cell diffusion coefficients exceeds some critical value, the plane propagating front becomes unstable with respect to transversal perturbations. The instability threshold and the full phase-plane diagram in the parameter space are determined. The results are in a qualitative agreement with experimental findings for the two types of cells.
我们研究多形性恶性脑肿瘤胶质母细胞瘤的体外动力学。生长中的肿瘤由一个密集的增殖区和一个较稀疏的外部侵袭区域组成。对不同类型细胞进行的实验显示出质的不同行为:一种细胞系以球对称方式侵袭,但另一种则会形成分支。我们使用两个耦合的反应扩散方程来描述细胞和营养物质浓度,从而为这种生长建立一个模型。当营养物质和细胞扩散系数的比率超过某个临界值时,平面传播前沿相对于横向扰动变得不稳定。确定了不稳定性阈值和参数空间中的完整相平面图。结果与这两种类型细胞的实验结果在定性上相符。