Suppr超能文献

用于检测基因组序列中信号的马尔可夫编码

Markov encoding for detecting signals in genomic sequences.

作者信息

Rajapakse Jagath C, Ho Loi Sy

机构信息

BioInformatics Research Center, School of Computer Engineering, Nanyang Technological University, Singapore 639798.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):131-42. doi: 10.1109/TCBB.2005.27.

Abstract

We present a technique to encode the inputs to neural networks for the detection of signals in genomic sequences. The encoding is based on lower-order Markov models which incorporate known biological characteristics in genomic sequences. The neural networks then learn intrinsic higher-order dependencies of nucleotides at the signal sites. We demonstrate the efficacy of the Markov encoding method in the detection of three genomic signals, namely, splice sites, transcription start sites, and translation initiation sites.

摘要

我们提出了一种对神经网络的输入进行编码的技术,用于检测基因组序列中的信号。这种编码基于低阶马尔可夫模型,该模型纳入了基因组序列中已知的生物学特征。然后,神经网络学习信号位点处核苷酸的内在高阶依赖性。我们证明了马尔可夫编码方法在检测三种基因组信号(即剪接位点、转录起始位点和翻译起始位点)方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验