Suppr超能文献

An adaptive visual neuronal model implementing competitive, temporally asymmetric Hebbian learning.

作者信息

Yang Zhijun, Cameron Katherine L, Murray Alan F, Boonsobhak Vasin

机构信息

Department of Computer Science, Nanjing Normal University, Nanjing 210097, China.

出版信息

Int J Neural Syst. 2006 Jun;16(3):151-62. doi: 10.1142/S0129065706000573.

Abstract

A novel depth-from-motion vision model based on leaky integrate-and-fire (I&F) neurons incorporates the implications of recent neurophysiological findings into an algorithm for object discovery and depth analysis. Pulse-coupled I&F neurons capture the edges in an optical flow field and the associated time of travel of those edges is encoded as the neuron parameters, mainly the time constant of the membrane potential and synaptic weight. Correlations between spikes and their timing thus code depth in the visual field. Neurons have multiple output synapses connecting to neighbouring neurons with an initial Gaussian weight distribution. A temporally asymmetric learning rule is used to adapt the synaptic weights online, during which competitive behaviour emerges between the different input synapses of a neuron. It is shown that the competition mechanism can further improve the model performance. After training, the weights of synapses sourced from a neuron do not display a Gaussian distribution, having adapted to encode features of the scenes to which they have been exposed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验