Jackson Andrew P, Vaughan Sue, Gull Keith
Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
BMC Genomics. 2006 Oct 18;7:261. doi: 10.1186/1471-2164-7-261.
alpha- and beta-tubulin are fundamental components of the eukaryotic cytoskeleton and cell division machinery. While overall tubulin expression is carefully controlled, most eukaryotes express multiple tubulin genes in specific regulatory or developmental contexts. The genomes of the human parasites Trypanosoma brucei and Leishmania major reveal that these unicellular kinetoplastids possess arrays of tandem-duplicated tubulin genes, but with differences in organisation. While L. major possesses monotypic alpha and beta arrays in trans, an array of alternating alpha- and beta tubulin genes occurs in T. brucei. Polycistronic transcription in these organisms makes the chromosomal arrangement of tubulin genes important with respect to gene expression.
We investigated the genomic architecture of tubulin tandem arrays among these parasites, establishing which character state is derived, and the timing of character transition. Tubulin loci in T. brucei and L. major were compared to examine the relationship between the two character states. Intergenic regions between tubulin genes were sequenced from several trypanosomatids and related, non-parasitic bodonids to identify the ancestral state. Evidence of alternating arrays was found among non-parasitic kinetoplastids and all Trypanosoma spp.; monotypic arrays were confirmed in all Leishmania spp. and close relatives.
Alternating and monotypic tubulin arrays were found to be mutually exclusive through comparison of genome sequences. The presence of alternating gene arrays in non-parasitic kinetoplastids confirmed that separate, monotypic arrays are the derived state and evolved through genomic restructuring in the lineage leading to Leishmania. This fundamental reorganisation accounted for the dissimilar genomic architectures of T. brucei and L. major tubulin repertoires.
α-微管蛋白和β-微管蛋白是真核细胞骨架和细胞分裂机制的基本组成部分。虽然微管蛋白的整体表达受到严格控制,但大多数真核生物在特定的调控或发育环境中表达多个微管蛋白基因。人类寄生虫布氏锥虫和硕大利什曼原虫的基因组显示,这些单细胞动基体拥有串联重复的微管蛋白基因阵列,但在组织方式上存在差异。硕大利什曼原虫具有反式排列的单型α和β阵列,而布氏锥虫则有一系列交替排列的α-和β-微管蛋白基因。这些生物中的多顺反子转录使得微管蛋白基因的染色体排列对于基因表达很重要。
我们研究了这些寄生虫中微管蛋白串联阵列的基因组结构,确定了哪种特征状态是衍生的,以及特征转变的时间。比较了布氏锥虫和硕大利什曼原虫的微管蛋白基因座,以研究两种特征状态之间的关系。对几种锥虫和相关的非寄生波豆虫的微管蛋白基因之间的基因间隔区进行了测序,以确定祖先状态。在非寄生动基体和所有锥虫属中发现了交替阵列的证据;在所有利什曼原虫属及其近亲中证实了单型阵列。
通过基因组序列比较发现,交替型和单型微管蛋白阵列是相互排斥的。非寄生动基体中交替基因阵列的存在证实,单独的单型阵列是衍生状态,并通过导致利什曼原虫的谱系中的基因组重组而进化。这种基本的重组解释了布氏锥虫和硕大利什曼原虫微管蛋白库不同的基因组结构。