Suppr超能文献

使用基于主要氨基酸特性的非比对方法鉴定候选亚单位疫苗。

Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties.

作者信息

Doytchinova Irini A, Flower Darren R

机构信息

Faculty of Pharmacy, Medical University of Sofia, Dunav st. 2, 1000 Sofia, Bulgaria.

出版信息

Vaccine. 2007 Jan 15;25(5):856-66. doi: 10.1016/j.vaccine.2006.09.032. Epub 2006 Sep 28.

Abstract

Subunit vaccine discovery is an accepted clinical priority. The empirical approach is time- and labor-consuming and can often end in failure. Rational information-driven approaches can overcome these limitations in a fast and efficient manner. However, informatics solutions require reliable algorithms for antigen identification. All known algorithms use sequence similarity to identify antigens. However, antigenicity may be encoded subtly in a sequence and may not be directly identifiable by sequence alignment. We propose a new alignment-independent method for antigen recognition based on the principal chemical properties of protein amino acid sequences. The method is tested by cross-validation on a training set of bacterial antigens and external validation on a test set of known antigens. The prediction accuracy is 83% for the cross-validation and 80% for the external test set. Our approach is accurate and robust, and provides a potent tool for the in silico discovery of medically relevant subunit vaccines.

摘要

亚单位疫苗研发是公认的临床重点。经验性方法耗时费力,且常常以失败告终。基于合理信息驱动的方法能够快速高效地克服这些局限性。然而,信息学解决方案需要可靠的算法来识别抗原。所有已知算法都利用序列相似性来识别抗原。然而,抗原性可能在序列中被微妙地编码,并且可能无法通过序列比对直接识别。我们提出了一种基于蛋白质氨基酸序列主要化学性质的、与比对无关的新抗原识别方法。该方法在一组细菌抗原训练集上进行交叉验证,并在一组已知抗原测试集上进行外部验证。交叉验证的预测准确率为83%,外部测试集的预测准确率为80%。我们的方法准确且稳健,为在计算机上发现医学相关亚单位疫苗提供了有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验