Lindsey Delwin T, Brown Angela M
Department of Psychology, Ohio State University, Mansfield, OH 44906, USA.
Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16608-13. doi: 10.1073/pnas.0607708103. Epub 2006 Oct 17.
We analyzed the World Color Survey (WCS) color-naming data set by using k-means cluster and concordance analyses. Cluster analysis relied on a similarity metric based on pairwise Pearson correlation of the complete chromatic color-naming patterns obtained from individual WCS informants. When K, the number of k-means clusters, varied from 2 to 10, we found that (i) the average color-naming patterns of the clusters all glossed easily to single or composite English patterns, and (ii) the structures of the k-means clusters unfolded in a hierarchical way that was reminiscent of the Berlin and Kay sequence of color category evolution. Gap statistical analysis showed that 8 was the optimal number of WCS chromatic categories: RED, GREEN, YELLOW-OR-ORANGE, BLUE, PURPLE, BROWN, PINK, and GRUE (GREEN-OR-BLUE). Analysis of concordance in color naming within WCS languages revealed small regions in color space that exhibited statistically significantly high concordance across languages. These regions agreed well with five of six primary focal colors of English. Concordance analysis also revealed boundary regions of statistically significantly low concordance. These boundary regions coincided with the boundaries associated with English WARM and COOL. Our results provide compelling evidence for similarities in the mechanisms that guide the lexical partitioning of color space among WCS languages and English.
我们通过使用k均值聚类和一致性分析来分析世界颜色调查(WCS)的颜色命名数据集。聚类分析依赖于一种相似性度量,该度量基于从各个WCS受访者获得的完整彩色颜色命名模式的成对皮尔逊相关性。当k均值聚类的数量K从2变化到10时,我们发现:(i)聚类的平均颜色命名模式都很容易简化为单一或复合的英语模式;(ii)k均值聚类的结构以一种分层方式展开,这让人想起柏林和凯的颜色类别演变序列。间隙统计分析表明,8是WCS彩色类别的最佳数量:红色、绿色、黄或橙、蓝色、紫色、棕色、粉色和青绿(绿或蓝)。对WCS语言中颜色命名一致性的分析揭示了颜色空间中的小区域,这些区域在不同语言之间表现出统计学上显著的高一致性。这些区域与英语六种主要焦点颜色中的五种非常吻合。一致性分析还揭示了统计学上显著低一致性的边界区域。这些边界区域与英语中与“暖”和“冷”相关的边界相吻合。我们的结果为指导WCS语言和英语中颜色空间词汇划分的机制的相似性提供了有力证据。