Rossini P M, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G, Ferreri F, Frisoni G, Chiovenda P, Miniussi C, Parisi L, Tombini M, Vecchio F, Babiloni C
IRCCS "Centro S. Giovanni di Dio-F.B.F.," Brescia, Italy.
Neuroscience. 2006 Dec;143(3):793-803. doi: 10.1016/j.neuroscience.2006.08.049. Epub 2006 Oct 13.
Objective. Can quantitative electroencephalography (EEG) predict the conversion from mild cognitive impairment (MCI) to Alzheimer's disease (AD)? Methods. Sixty-nine subjects fulfilling criteria for MCI were enrolled; cortical connectivity (spectral coherence) and (low resolution brain electromagnetic tomography) sources of EEG rhythms (delta=2-4 Hz; theta=4-8 Hz; alpha 1=8-10.5 Hz; alpha 2=10.5-13 Hz: beta 1=13-20 Hz; beta 2=20-30 Hz; and gamma=30-40) were evaluated at baseline (time of MCI diagnosis) and follow up (about 14 months later). At follow-up, 45 subjects were still MCI (MCI Stable) and 24 subjects were converted to AD (MCI Converted). Results. At baseline, fronto-parietal midline coherence as well as delta (temporal), theta (parietal, occipital and temporal), and alpha 1 (central, parietal, occipital, temporal, limbic) sources were stronger in MCI Converted than stable subjects (P<0.05). Cox regression modeling showed low midline coherence and weak temporal source associated with 10% annual rate AD conversion, while this rate increased up to 40% and 60% when strong temporal delta source and high midline gamma coherence were observed respectively. Interpretation. Low-cost and diffuse computerized EEG techniques are able to statistically predict MCI to AD conversion.
目的。定量脑电图(EEG)能否预测轻度认知障碍(MCI)向阿尔茨海默病(AD)的转化?方法。招募了69名符合MCI标准的受试者;在基线(MCI诊断时)和随访(约14个月后)时评估脑电图节律的皮质连接性(频谱相干性)和(低分辨率脑电磁断层扫描)源(δ=2 - 4Hz;θ=4 - 8Hz;α1=8 - 10.5Hz;α2=10.5 - 13Hz;β1=13 - 20Hz;β2=20 - 30Hz;γ=30 - 40)。随访时,45名受试者仍为MCI(MCI稳定组),24名受试者转化为AD(MCI转化组)。结果。在基线时,MCI转化组的额顶中线相干性以及δ(颞叶)、θ(顶叶、枕叶和颞叶)和α1(中央、顶叶、枕叶、颞叶、边缘系统)源比稳定组更强(P<0.05)。Cox回归模型显示,低中线相干性和弱颞叶源与每年10%的AD转化率相关,而当分别观察到强颞叶δ源和高中线γ相干性时,该转化率分别增至40%和60%。解读。低成本且广泛应用的计算机化脑电图技术能够从统计学上预测MCI向AD的转化。