Suppr超能文献

利用静息态定量脑电图信号,头皮区域对基于机器学习的痴呆症分类的贡献。

Contribution of Scalp Regions to Machine Learning-Based Classification of Dementia Utilizing Resting-State qEEG Signals.

作者信息

Simfukwe Chanda, An Seong Soo A, Youn Young Chul

机构信息

Department of Bionano Technology, Gachon University, Seongnam-si, South Korea.

Department of Neurology, College of Medicine, Chung-Ang University, Seoul, South Korea.

出版信息

Neuropsychiatr Dis Treat. 2024 Dec 6;20:2375-2389. doi: 10.2147/NDT.S486452. eCollection 2024.

Abstract

PURPOSE

This study aims to investigate using eyes-open (EO) and eyes-closed (EC) resting-state EEG data to diagnose cognitive impairment using machine learning methods, enhancing timely intervention and cost-effectiveness in dementia research.

PARTICIPANTS AND METHODS

A total of 890 participants aged 40-90 were included in the study, comprising 269 healthy controls (HC), 356 individuals with mild cognitive impairment (MCI), and 265 with Alzheimer's disease (AD) from a cohort study. Resting-state EEG (rEEG) signals were recorded and transformed into relative power spectral density (PSD) data for analysis. The processed PSD data, representing 19 scalp regions, were then input into a Random Forest (RF) machine learning classifier to identify distinctive EEG patterns across the groups. Statistical comparisons between the groups were conducted using one-way ANOVA, applied to the relative PSD features extracted from the EEG data, to assess significant differences in EEG activity across the diagnostic categories.

RESULTS

The study found that rEEG-based categorization effectively differentiates between cognitively impaired individuals and healthy individuals. The EO rEEG achieved the highest performance metrics across various models. For HC vs MCI (combined hemisphere), the accuracy, sensitivity, specificity, and AUC were 92%, 99%, 83%, and 96%, respectively. For HC vs AD (parietal, temporal, occipital), these metrics were 95%, 96%, 94%, and 99%. The HC vs CASE (MCI + AD) (combined hemisphere) results were 90%, 99%, 73%, and 92%. The metrics for HC vs MCI vs AD (frontal, parietal, temporal) were 89%, 88%, 94%, and 96%.

CONCLUSION

The study demonstrates that EO rEEG can effectively distinguish between cognitive impairment and healthy states, leading to early diagnosis, cost-effective treatment, and better clinical outcomes for dementia patients. EO and EC rEEG models trained with relative PSD, particularly from parietal, temporal, occipital, and central scalp regions, can significantly assist clinicians in practice.

摘要

目的

本研究旨在探讨使用睁眼(EO)和闭眼(EC)静息态脑电图数据,通过机器学习方法诊断认知障碍,以提高痴呆症研究中的及时干预和成本效益。

参与者与方法

本研究共纳入890名年龄在40至90岁之间的参与者,他们来自一项队列研究,其中包括269名健康对照者(HC)、356名轻度认知障碍(MCI)个体和265名阿尔茨海默病(AD)患者。记录静息态脑电图(rEEG)信号,并将其转换为相对功率谱密度(PSD)数据进行分析。然后,将代表19个头皮区域的处理后的PSD数据输入随机森林(RF)机器学习分类器,以识别各组之间独特的脑电图模式。使用单因素方差分析对各组进行统计比较,该分析应用于从脑电图数据中提取的相对PSD特征,以评估不同诊断类别之间脑电图活动的显著差异。

结果

研究发现,基于rEEG的分类能够有效地区分认知障碍个体和健康个体。在各种模型中,EO rEEG的性能指标最高。对于HC与MCI(双侧半球),准确率、灵敏度、特异度和AUC分别为92%、99%、83%和96%。对于HC与AD(顶叶、颞叶、枕叶),这些指标分别为95%、96%、94%和99%。HC与病例组(MCI + AD)(双侧半球)的结果为90%、99%、73%和92%。HC与MCI与AD(额叶、顶叶、颞叶)的指标分别为89%、88%、94%和96%。

结论

该研究表明,EO rEEG能够有效区分认知障碍和健康状态,从而实现早期诊断、经济有效的治疗,并为痴呆症患者带来更好的临床结果。用相对PSD训练的EO和EC rEEG模型,特别是来自顶叶、颞叶、枕叶和中央头皮区域的模型,在实践中可以显著帮助临床医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ef6/11630699/4b0a24c02ae3/NDT-20-2375-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验