Suppr超能文献

Reverse engineering discrete dynamical systems from data sets with random input vectors.

作者信息

Just Winfried

机构信息

Department of Mathematics, Ohio University, Athens, 45701, USA.

出版信息

J Comput Biol. 2006 Oct;13(8):1435-56. doi: 10.1089/cmb.2006.13.1435.

Abstract

Recently a new algorithm for reverse engineering of biochemical networks was developed by Laubenbacher and Stigler. It is based on methods from computational algebra and finds most parsimonious models for a given data set. We derive mathematically rigorous estimates for the expected amount of data needed by this algorithm to find the correct model. In particular, we demonstrate that for one type of input parameter (graded term orders), the expected data requirements scale polynomially with the number n of chemicals in the network, while for another type of input parameters (randomly chosen lex orders) this number scales exponentially in n. We also show that, for a modification of the algorithm, the expected data requirements scale as the logarithm of n.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验