Suppr超能文献

多离子通道的通用连续介质理论。I. 理论。

General continuum theory for multiion channel. I. Theory.

作者信息

Levitt D G

机构信息

Department of Physiology, University of Minnesota, Minneapolis 55455.

出版信息

Biophys J. 1991 Feb;59(2):271-7. doi: 10.1016/S0006-3495(91)82220-2.

Abstract

It is assumed that the channel is completely characterized by three factors: (a) its geometric shape, (b) the potential energy interaction between an ion and the channel wall, and (c) the potential energy interaction between two ions at arbitrary positions in the channel. The total potential energy of an ion in a multiion channel can be described by a summation over factors b and c. The ion-water interaction is described by a continuum diffusion coefficient which is determined by the channel geometry (c). Given this physical description, a theory is described that predicts the flux of all the ion species that are present, with no additional assumptions about, e.g., the maximum number of ions allowed in the channel, location of binding sites or shape of energy barriers. The solution is based on a combination of the Nernst-Planck and Poisson equation. The Poisson potential is corrected for the ion's self potential. A hard sphere ion-ion interaction is included that prevents ions from piling up on top of each other in regions where the channel wall has a high charge density. An exact analytical solution is derived for the region in the bulk solution, far from the channel mouth and this solution is used as a boundary condition for the numerical solution. The numerical solution is obtained by an interactive procedure that is surprisingly efficient. Application of the theory to the acetylcholine receptor channel is described in the companion paper (Levitt, D. G. 1990. Biophys. J. 59:278-288).

摘要

假定该通道完全由三个因素表征

(a) 其几何形状,(b) 离子与通道壁之间的势能相互作用,以及 (c) 通道中任意位置的两个离子之间的势能相互作用。多离子通道中离子的总势能可以通过对因素 b 和 c 的求和来描述。离子 - 水相互作用由连续扩散系数描述,该系数由通道几何形状 (c) 决定。基于此物理描述,描述了一种理论,该理论可预测所有存在的离子种类的通量,而无需对例如通道中允许的最大离子数、结合位点的位置或能垒的形状等进行额外假设。该解决方案基于能斯特 - 普朗克方程和泊松方程的组合。泊松势针对离子的自电势进行了校正。包含了硬球离子 - 离子相互作用,以防止离子在通道壁电荷密度高的区域相互堆积。推导了远离通道口的本体溶液区域的精确解析解,并将该解用作数值解的边界条件。数值解通过一个出人意料高效的交互式程序获得。该理论在配套论文(Levitt, D. G. 1990. Biophys. J. 59:278 - 288)中应用于乙酰胆碱受体通道进行了描述。

相似文献

1
General continuum theory for multiion channel. I. Theory.
Biophys J. 1991 Feb;59(2):271-7. doi: 10.1016/S0006-3495(91)82220-2.
2
General continuum theory for multiion channel. II. Application to acetylcholine channel.
Biophys J. 1991 Feb;59(2):278-88. doi: 10.1016/S0006-3495(91)82221-4.
3
Exact continuum solution for a channel that can be occupied by two ions.
Biophys J. 1987 Sep;52(3):455-66. doi: 10.1016/S0006-3495(87)83234-4.
4
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Biophys J. 1998 May;74(5):2235-48. doi: 10.1016/S0006-3495(98)77933-0.
5
Electrodiffusion of ions approaching the mouth of a conducting membrane channel.
Biophys J. 1988 Jun;53(6):863-75. doi: 10.1016/S0006-3495(88)83167-9.
8
Ion flow in the bath and flux interactions between channels.
Biophys J. 1994 Apr;66(4):989-95. doi: 10.1016/S0006-3495(94)80880-X.
9
Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel.
Biophys J. 1997 Jan;72(1):97-116. doi: 10.1016/S0006-3495(97)78650-8.

引用本文的文献

1
Nernst equilibrium, rectification, and saturation: Insights into ion channel behavior.
Biophys J. 2024 Dec 17;123(24):4304-4315. doi: 10.1016/j.bpj.2024.10.016. Epub 2024 Oct 30.
2
Nernst Equilibrium, Rectification, and Saturation: Insights into Ion Channel Behavior.
bioRxiv. 2024 Aug 17:2024.08.16.608320. doi: 10.1101/2024.08.16.608320.
3
Electrical coupling and its channels.
J Gen Physiol. 2018 Dec 3;150(12):1606-1639. doi: 10.1085/jgp.201812203. Epub 2018 Nov 2.
4
Acid activation mechanism of the influenza A M2 proton channel.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E6955-E6964. doi: 10.1073/pnas.1615471113. Epub 2016 Oct 24.
5
Interacting ions in biophysics: real is not ideal.
Biophys J. 2013 May 7;104(9):1849-66. doi: 10.1016/j.bpj.2013.03.049.
6
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
7
Testing the applicability of Nernst-Planck theory in ion channels: comparisons with Brownian dynamics simulations.
PLoS One. 2011;6(6):e21204. doi: 10.1371/journal.pone.0021204. Epub 2011 Jun 23.
9
Gap junction channels exhibit connexin-specific permeability to cyclic nucleotides.
J Gen Physiol. 2008 Apr;131(4):293-305. doi: 10.1085/jgp.200709934.
10
Proton transport behavior through the influenza A M2 channel: insights from molecular simulation.
Biophys J. 2007 Nov 15;93(10):3470-9. doi: 10.1529/biophysj.107.105742. Epub 2007 Aug 10.

本文引用的文献

4
Exact continuum solution for a channel that can be occupied by two ions.
Biophys J. 1987 Sep;52(3):455-66. doi: 10.1016/S0006-3495(87)83234-4.
5
Interpretation of biological ion channel flux data--reaction-rate versus continuum theory.
Annu Rev Biophys Biophys Chem. 1986;15:29-57. doi: 10.1146/annurev.bb.15.060186.000333.
6
The theory of ion transport through membrane channels.
Prog Biophys Mol Biol. 1985;46(1):51-96. doi: 10.1016/0079-6107(85)90012-4.
8
General continuum theory for multiion channel. II. Application to acetylcholine channel.
Biophys J. 1991 Feb;59(2):278-88. doi: 10.1016/S0006-3495(91)82221-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验