Suppr超能文献

离子向导电膜通道口靠近时的电扩散。

Electrodiffusion of ions approaching the mouth of a conducting membrane channel.

作者信息

Peskoff A, Bers D M

机构信息

Department of Biomathematics and Physiology, University of California, Los Angeles 90024-1766.

出版信息

Biophys J. 1988 Jun;53(6):863-75. doi: 10.1016/S0006-3495(88)83167-9.

Abstract

The movement of ions in the aqueous medium as they approach the mouth (radius a) of a conducting membrane channel is analyzed. Starting with the Nernst-Planck and Poisson equations, we derive a nonlinear integrodifferential equation for the electric potential, phi(r), a less than or equal to r less than infinity. The formulation allows deviations from charge neutrality and dependence of phi(r) on ion flux. A numerical solution is obtained by converting the equation to an integral equation that is solved by an iterative method for an assumed mouth potential, combined with a shooting method to adjust the mouth potential until the numerical solution agrees with an asymptotic expansion of the potential at r-a much greater than lambda (lambda = Debye length). Approximate analytic solutions are obtained by assuming charge neutrality (Läuger, 1976) and by linearizing. The linear approximation agrees with the exact solution under most physiological conditions, but the charge-neutrality solution is only valid for r much greater than lambda and thus cannot be used unless a much greater than lambda. Families of curves of ion flux vs. potential drop across the electrolyte, phi(infinity)-phi (a), and of permeant ion density at the channel mouth, n1(a), vs. flux are obtained for different values of a/lambda and S = a d phi/dr(a). If a much greater than lambda and S = O, the maximum flux (which is approached when n1(a)----0) is reduced by 50% compared to the value predicted by the charge-neutrality solution. Access resistance is shown to be a factor a/[2 (a + lambda)] times the published formula (Hille, 1968), which was derived without including deviations from charge neutrality and ion density gradients and hence does not apply when there is no counter-ion current. The results are applied to an idealized diffusion-limited channel with symmetric electrolytes. For S = O, the current/voltage curves saturate at a value dependent on a/lambda; for S greater than O, they increase linearly for large voltage.

摘要

分析了离子在水性介质中靠近导电膜通道口(半径为a)时的运动情况。从能斯特 - 普朗克方程和泊松方程出发,我们推导出了电势φ(r)的非线性积分 - 微分方程,其中a≤r<∞。该公式允许偏离电荷中性以及φ(r)对离子通量的依赖。通过将方程转换为积分方程来获得数值解,该积分方程通过针对假定的口电势的迭代方法求解,并结合打靶法来调整口电势,直到数值解与r - a远大于λ(λ = 德拜长度)时电势的渐近展开式一致。通过假设电荷中性(Läuger,1976)和线性化获得近似解析解。线性近似在大多数生理条件下与精确解一致,但电荷中性解仅在r远大于λ时有效,因此除非a远大于λ否则不能使用。针对不同的a/λ值和S = a dφ/dr(a),得到了离子通量与电解质上的电势降φ(∞) - φ(a)的曲线族,以及通道口处渗透离子密度n1(a)与通量的曲线族。如果a远大于λ且S = 0,与电荷中性解预测的值相比,最大通量(当n1(a)趋于0时趋近)降低了50%。接入电阻显示为已发表公式(Hille,1968)的a/[2 (a + λ)]倍,该公式的推导未包括偏离电荷中性和离子密度梯度的情况,因此在没有反离子电流时不适用。结果应用于具有对称电解质的理想化扩散限制通道。对于S = 0,电流/电压曲线在取决于a/λ的值处饱和;对于S大于0,它们在大电压下线性增加。

相似文献

6
Self-consistent analytic solution for the current and the access resistance in open ion channels.开放离子通道中电流与接入电阻的自洽解析解。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021925. doi: 10.1103/PhysRevE.80.021925. Epub 2009 Aug 21.
7
Moderately nonlinear diffuse-charge dynamics under an ac voltage.交流电压下的适度非线性扩散电荷动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032305. doi: 10.1103/PhysRevE.92.032305. Epub 2015 Sep 9.
10
Access resistance of a single conducting membrane channel.单个传导性膜通道的通路电阻。
Biochim Biophys Acta. 1998 Jan 19;1368(2):338-42. doi: 10.1016/s0005-2736(97)00205-8.

引用本文的文献

4
Maxwell-Hall access resistance in graphene nanopores.石墨烯纳米孔中的麦克斯韦-霍尔接触电阻。
Phys Chem Chem Phys. 2018 Feb 14;20(7):4646-4651. doi: 10.1039/c7cp07924a.
5
Ca2+ channel nanodomains boost local Ca2+ amplitude.钙离子通道纳米区会增强局部钙离子的振幅。
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15794-9. doi: 10.1073/pnas.1313898110. Epub 2013 Sep 9.
8
Solution of the Poisson-Nernst-Planck equations in the cell-substrate interface.细胞-基底界面处泊松-能斯特-普朗克方程的解
Eur Phys J E Soft Matter. 2007 Sep;24(1):1-8. doi: 10.1140/epje/i2007-10204-6. Epub 2007 Aug 29.
9
Computing numerically the access resistance of a pore.数值计算孔隙的通透阻力。
Eur Biophys J. 2005 Jun;34(4):314-22. doi: 10.1007/s00249-004-0452-x. Epub 2005 Mar 9.

本文引用的文献

6
Effects of double-layer polarization on ion transport.双层极化对离子传输的影响。
Biophys J. 1987 Jan;51(1):27-36. doi: 10.1016/S0006-3495(87)83308-8.
9
Access resistance of a small circular pore.小孔的通透阻力
J Gen Physiol. 1975 Oct;66(4):531-2. doi: 10.1085/jgp.66.4.531.
10
Diffusion-limited ion flow through pores.通过孔隙的扩散限制离子流。
Biochim Biophys Acta. 1976 Dec 2;455(2):493-509. doi: 10.1016/0005-2736(76)90320-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验