Suppr超能文献

酿酒酵母转录调控网络中信号整合的拓扑基础

Topological basis of signal integration in the transcriptional-regulatory network of the yeast, Saccharomyces cerevisiae.

作者信息

Farkas Illés J, Wu Chuang, Chennubhotla Chakra, Bahar Ivet, Oltvai Zoltán N

机构信息

Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.

出版信息

BMC Bioinformatics. 2006 Oct 28;7:478. doi: 10.1186/1471-2105-7-478.

Abstract

BACKGROUND

Signal recognition and information processing is a fundamental cellular function, which in part involves comprehensive transcriptional regulatory (TR) mechanisms carried out in response to complex environmental signals in the context of the cell's own internal state. However, the network topological basis of developing such integrated responses remains poorly understood.

RESULTS

By studying the TR network of the yeast Saccharomyces cerevisiae we show that an intermediate layer of transcription factors naturally segregates into distinct subnetworks. In these topological units transcription factors are densely interlinked in a largely hierarchical manner and respond to external signals by utilizing a fraction of these subnets.

CONCLUSION

As transcriptional regulation represents the 'slow' component of overall information processing, the identified topology suggests a model in which successive waves of transcriptional regulation originating from distinct fractions of the TR network control robust integrated responses to complex stimuli.

摘要

背景

信号识别与信息处理是细胞的一项基本功能,部分涉及在细胞自身内部状态背景下,针对复杂环境信号进行的全面转录调控(TR)机制。然而,产生这种整合反应的网络拓扑基础仍知之甚少。

结果

通过研究酿酒酵母的TR网络,我们发现转录因子的中间层自然地分离成不同的子网。在这些拓扑单元中,转录因子以很大程度上分层的方式紧密相连,并通过利用这些子网的一部分来响应外部信号。

结论

由于转录调控代表了整体信息处理中的“缓慢”部分,所识别的拓扑结构提出了一种模型,其中源自TR网络不同部分的连续转录调控波控制对复杂刺激的稳健整合反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/62ea/1643839/e189593ea554/1471-2105-7-478-1.jpg

相似文献

2
Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
3
Reconstructing genetic networks in yeast.
Nat Biotechnol. 2003 Nov;21(11):1295-7. doi: 10.1038/nbt1103-1295.
4
Computational discovery of gene modules and regulatory networks.
Nat Biotechnol. 2003 Nov;21(11):1337-42. doi: 10.1038/nbt890. Epub 2003 Oct 12.
5
Transcriptional regulatory network shapes the genome structure of Saccharomyces cerevisiae.
Nucleus. 2013 May-Jun;4(3):216-28. doi: 10.4161/nucl.24875. Epub 2013 May 1.
6
Evolutionary rates and centrality in the yeast gene regulatory network.
Genome Biol. 2009;10(4):R35. doi: 10.1186/gb-2009-10-4-r35. Epub 2009 Apr 9.
9
Transcriptional responses to fatty acid are coordinated by combinatorial control.
Mol Syst Biol. 2007;3:115. doi: 10.1038/msb4100157. Epub 2007 Jun 5.

引用本文的文献

1
Feedbacks from the metabolic network to the genetic network reveal regulatory modules in E. coli and B. subtilis.
PLoS One. 2018 Oct 4;13(10):e0203311. doi: 10.1371/journal.pone.0203311. eCollection 2018.
4
Genetic and environmental factors affecting cryptic variations in gene regulatory networks.
BMC Evol Biol. 2013 Apr 26;13:91. doi: 10.1186/1471-2148-13-91.
5
Linking the signaling cascades and dynamic regulatory networks controlling stress responses.
Genome Res. 2013 Feb;23(2):365-76. doi: 10.1101/gr.138628.112. Epub 2012 Oct 11.
6
Transcriptional network structure has little effect on the rate of regulatory evolution in yeast.
Mol Biol Evol. 2012 Aug;29(8):1899-905. doi: 10.1093/molbev/msq283. Epub 2010 Oct 21.
7
Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints.
PLoS Comput Biol. 2010 Aug 5;6(8):e1000873. doi: 10.1371/journal.pcbi.1000873.
8
Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis.
PLoS Comput Biol. 2010 Apr 1;6(4):e1000730. doi: 10.1371/journal.pcbi.1000730.
9
Protein interaction network underpins concordant prognosis among heterogeneous breast cancer signatures.
J Biomed Inform. 2010 Jun;43(3):385-96. doi: 10.1016/j.jbi.2010.03.009. Epub 2010 Mar 27.

本文引用的文献

1
A bottom-up approach to gene regulation.
Nature. 2006 Feb 16;439(7078):856-60. doi: 10.1038/nature04473.
2
CFinder: locating cliques and overlapping modules in biological networks.
Bioinformatics. 2006 Apr 15;22(8):1021-3. doi: 10.1093/bioinformatics/btl039. Epub 2006 Feb 10.
3
Gene regulatory networks and the evolution of animal body plans.
Science. 2006 Feb 10;311(5762):796-800. doi: 10.1126/science.1113832.
4
The comprehensive updated regulatory network of Escherichia coli K-12.
BMC Bioinformatics. 2006 Jan 6;7:5. doi: 10.1186/1471-2105-7-5.
5
Topology of biological networks and reliability of information processing.
Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18414-9. doi: 10.1073/pnas.0509132102. Epub 2005 Dec 8.
6
Global analysis of protein phosphorylation in yeast.
Nature. 2005 Dec 1;438(7068):679-84. doi: 10.1038/nature04187.
7
Interlinked fast and slow positive feedback loops drive reliable cell decisions.
Science. 2005 Oct 21;310(5747):496-8. doi: 10.1126/science.1113834.
8
Dynamic properties of network motifs contribute to biological network organization.
PLoS Biol. 2005 Nov;3(11):e343. doi: 10.1371/journal.pbio.0030343. Epub 2005 Oct 4.
9
Spontaneous evolution of modularity and network motifs.
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13773-8. doi: 10.1073/pnas.0503610102. Epub 2005 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验