Suppr超能文献

MADS盒蛋白XAANTAL1可增加拟南芥根干细胞龛处的细胞增殖,并通过调控细胞周期组分参与细胞分化转变过程。

The MADS-box XAANTAL1 increases proliferation at the Arabidopsis root stem-cell niche and participates in transition to differentiation by regulating cell-cycle components.

作者信息

García-Cruz Karla V, García-Ponce Berenice, Garay-Arroyo Adriana, Sanchez María De La Paz, Ugartechea-Chirino Yamel, Desvoyes Bénédicte, Pacheco-Escobedo Mario A, Tapia-López Rosalinda, Ransom-Rodríguez Ivan, Gutierrez Crisanto, Alvarez-Buylla Elena R

机构信息

Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Av. Universidad 3000, Coyoacán, México D.F. 04510, México.

Centro de Investigación en Dinámica Celular, Facultad de Ciencias, Universidad Autónoma de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Morelos, 62209, México.

出版信息

Ann Bot. 2016 Oct 1;118(4):787-796. doi: 10.1093/aob/mcw126.

Abstract

Background Morphogenesis depends on the concerted modulation of cell proliferation and differentiation. Such modulation is dynamically adjusted in response to various external and internal signals via complex transcriptional regulatory networks that mediate between such signals and regulation of cell-cycle and cellular responses (proliferation, growth, differentiation). In plants, which are sessile, the proliferation/differentiation balance is plastically adjusted during their life cycle and transcriptional networks are important in this process. MADS-box genes are key developmental regulators in eukaryotes, but their role in cell proliferation and differentiation modulation in plants remains poorly studied. Methods We characterize the XAL1 loss-of-function xal1-2 allele and overexpression lines using quantitative cellular and cytometry analyses to explore its role in cell cycle, proliferation, stem-cell patterning and transition to differentiation. We used quantitative PCR and cellular markers to explore if XAL1 regulates cell-cycle components and PLETHORA1 (PLT1) gene expression, as well as confocal microscopy to analyse stem-cell niche organization. Key Results We previously showed that XAANTAL1 (XAL1/AGL12) is necessary for Arabidopsis root development as a promoter of cell proliferation in the root apical meristem. Here, we demonstrate that XAL1 positively regulates the expression of PLT1 and important components of the cell cycle: CYCD3;1, CYCA2;3, CYCB1;1, CDKB1;1 and CDT1a. In addition, we show that xal1-2 mutant plants have a premature transition to differentiation with root hairs appearing closer to the root tip, while endoreplication in these plants is partially compromised. Coincidently, the final size of cortex cells in the mutant is shorter than wild-type cells. Finally, XAL1 overexpression-lines corroborate that this transcription factor is able to promote cell proliferation at the stem-cell niche. Conclusion XAL1 seems to be an important component of the networks that modulate cell proliferation/differentiation transition and stem-cell proliferation during Arabidopsis root development; it also regulates several cell-cycle components.

摘要

背景 形态发生依赖于细胞增殖和分化的协同调节。这种调节通过复杂的转录调控网络,根据各种外部和内部信号进行动态调整,该网络介导这些信号与细胞周期和细胞反应(增殖、生长、分化)的调节之间的关系。在固着生长的植物中,增殖/分化平衡在其生命周期中进行可塑性调节,转录网络在这一过程中起着重要作用。MADS-box基因是真核生物中关键的发育调节因子,但其在植物细胞增殖和分化调节中的作用仍研究不足。方法 我们利用定量细胞分析和细胞计数分析对XAL1功能缺失的xal1-2等位基因和过表达株系进行表征,以探究其在细胞周期、增殖、干细胞模式形成以及向分化转变中的作用。我们使用定量PCR和细胞标记物来探究XAL1是否调节细胞周期成分和多能性相关基因1(PLT1)的表达,同时利用共聚焦显微镜分析干细胞微环境的组织情况。主要结果 我们之前表明,拟南芥根发育过程中,XAANTAL1(XAL1/AGL12)作为根尖分生组织中细胞增殖的促进因子是必需的。在此,我们证明XAL1正向调节PLT1以及细胞周期的重要成分的表达:CYCD3;1、CYCA2;3、CYCB1;1、CDKB1;1和CDT1a。此外,我们发现xal1-2突变体植物过早向分化转变,根毛出现在更靠近根尖的位置,而这些植物中的核内复制部分受损。巧合的是,突变体中皮层细胞的最终大小比野生型细胞短。最后,XAL1过表达株系证实该转录因子能够促进干细胞微环境中的细胞增殖。结论 XAL1似乎是拟南芥根发育过程中调节细胞增殖/分化转变和干细胞增殖的网络的重要组成部分;它还调节多个细胞周期成分。

相似文献

5
HDACs MADS-domain protein interaction: a case study of HDA15 and XAL1 in .
Plant Signal Behav. 2024 Dec 31;19(1):2353536. doi: 10.1080/15592324.2024.2353536. Epub 2024 May 21.
6
MADS-box genes underground becoming mainstream: plant root developmental mechanisms.
New Phytol. 2019 Aug;223(3):1143-1158. doi: 10.1111/nph.15793. Epub 2019 Apr 12.
7
Overexpression of MADS-box Gene Activates Root Development in and .
Plants (Basel). 2020 Apr 2;9(4):444. doi: 10.3390/plants9040444.
8
The MADS-box genes and antagonize functions in root development.
Front Plant Sci. 2024 Mar 21;15:1331269. doi: 10.3389/fpls.2024.1331269. eCollection 2024.
9
Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots.
Development. 2011 Mar;138(5):849-59. doi: 10.1242/dev.057331. Epub 2011 Jan 26.
10
Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana.
Planta. 2005 Nov;222(4):730-42. doi: 10.1007/s00425-005-0020-3. Epub 2005 Nov 4.

引用本文的文献

2
HDACs MADS-domain protein interaction: a case study of HDA15 and XAL1 in .
Plant Signal Behav. 2024 Dec 31;19(1):2353536. doi: 10.1080/15592324.2024.2353536. Epub 2024 May 21.
5
Identification and expression analysis of the MADS-box genes of Kentucky bluegrass during inflorescence development.
Physiol Mol Biol Plants. 2022 Jul;28(7):1359-1374. doi: 10.1007/s12298-022-01216-1. Epub 2022 Aug 22.
6
Control of the Rhizobia Nitrogen-Fixing Symbiosis by Common Bean MADS-Domain/AGL Transcription Factors.
Front Plant Sci. 2021 Jun 7;12:679463. doi: 10.3389/fpls.2021.679463. eCollection 2021.
8
Overexpression of MADS-box Gene Activates Root Development in and .
Plants (Basel). 2020 Apr 2;9(4):444. doi: 10.3390/plants9040444.
9
Peptide Hormone Genes Promote Primary Root Growth and Adventitious Root Formation.
Plants (Basel). 2019 Nov 18;8(11):520. doi: 10.3390/plants8110520.
10
Asymmetric birth and death of type I and type II MADS-box gene subfamilies in the rubber tree facilitating laticifer development.
PLoS One. 2019 Apr 1;14(4):e0214335. doi: 10.1371/journal.pone.0214335. eCollection 2019.

本文引用的文献

3
PLETHORA gradient formation mechanism separates auxin responses.
Nature. 2014 Nov 6;515(7525):125-129. doi: 10.1038/nature13663. Epub 2014 Aug 24.
4
An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis.
Front Plant Sci. 2014 Jun 5;5:259. doi: 10.3389/fpls.2014.00259. eCollection 2014.
6
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth.
Nat Rev Mol Cell Biol. 2014 Mar;15(3):197-210. doi: 10.1038/nrm3756.
7
8
Interplay between cell growth and cell cycle in plants.
J Exp Bot. 2014 Jun;65(10):2703-14. doi: 10.1093/jxb/ert354. Epub 2013 Nov 11.
10
Cytokinins control endocycle onset by promoting the expression of an APC/C activator in Arabidopsis roots.
Curr Biol. 2013 Sep 23;23(18):1812-7. doi: 10.1016/j.cub.2013.07.051. Epub 2013 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验