Gerber Bertram, Stocker Reinhard F
Universität Würzburg, Biozentrum, Am Hubland, Lehrstuhl für Genetik und Neurobiologie, D-97074 Würzburg, Germany.
Chem Senses. 2007 Jan;32(1):65-89. doi: 10.1093/chemse/bjl030. Epub 2006 Oct 27.
Understanding the relationship between brain and behavior is the fundamental challenge in neuroscience. We focus on chemosensation and chemosensory learning in larval Drosophila and review what is known about its molecular and cellular bases. Detailed analyses suggest that the larval olfactory system, albeit much reduced in cell number, shares the basic architecture, both in terms of receptor gene expression and neuronal circuitry, of its adult counterpart as well as of mammals. With respect to the gustatory system, less is known in particular with respect to processing of gustatory information in the central nervous system, leaving generalizations premature. On the behavioral level, a learning paradigm for the association of odors with food reinforcement has been introduced. Capitalizing on the knowledge of the chemosensory pathways, we review the first steps to reveal the genetic and cellular bases of olfactory learning in larval Drosophila. We argue that the simplicity of the larval chemosensory system, combined with the experimental accessibility of Drosophila on the genetic, electrophysiological, cellular, and behavioral level, makes this system suitable for an integrated understanding of chemosensation and chemosensory learning.
理解大脑与行为之间的关系是神经科学的根本挑战。我们聚焦于果蝇幼虫的化学感受和化学感受学习,并综述其分子和细胞基础方面的已知情况。详细分析表明,幼虫嗅觉系统尽管细胞数量大幅减少,但在受体基因表达和神经回路方面,与成年果蝇以及哺乳动物的嗅觉系统具有相同的基本架构。关于味觉系统,尤其是中枢神经系统中味觉信息的处理,我们所知较少,因此进行概括还为时过早。在行为层面,已经引入了一种将气味与食物强化联系起来的学习范式。利用化学感受通路的知识,我们综述了揭示果蝇幼虫嗅觉学习的遗传和细胞基础的初步步骤。我们认为,幼虫化学感受系统的简单性,再加上果蝇在遗传、电生理、细胞和行为层面易于进行实验研究,使得该系统适合于对化学感受和化学感受学习进行综合理解。