Cao Nannan, Yetik Imam Samil, Nehorai Arye, Muravchik Carlos H, Haueisen Jens
Department of Electrical and Systems Engineering, Washington University in St. Louis, MO 63130, USA.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2156-65. doi: 10.1109/TBME.2006.880885.
We develop three parametric models for electroencephalography (EEG) to estimate current sources that are spatially distributed on a line. We assume a realistic head model and solve the EEG forward problem using the boundary element method (BEM). We present the models with increasing degrees of freedom, provide the forward solutions, and derive the maximum-likelihood estimates as well as Cramér-Rao bounds of the unknown source parameters. A series of experiments are conducted to evaluate the applicability of the proposed models. We use numerical examples to demonstrate the usefulness of our line-source models in estimating extended sources. We also apply our models to the real EEG data of N20 response that is known to have an extended source. We observe that the line-source models explain the N20 measurements better than the dipole model.
我们开发了三种用于脑电图(EEG)的参数模型,以估计在一条线上空间分布的电流源。我们假设一个现实的头部模型,并使用边界元法(BEM)求解EEG正向问题。我们以增加的自由度呈现模型,提供正向解,并推导未知源参数的最大似然估计以及克拉美 - 罗界。进行了一系列实验以评估所提出模型的适用性。我们使用数值示例来证明我们的线源模型在估计扩展源方面的有用性。我们还将我们的模型应用于已知具有扩展源的N20反应的真实EEG数据。我们观察到线源模型比偶极子模型能更好地解释N20测量结果。