Suppr超能文献

通过荧光共振能量转移和分子建模对人端粒酶RNA催化核心进行结构分析。

Structural analysis of the catalytic core of human telomerase RNA by FRET and molecular modeling.

作者信息

Gavory Gérald, Symmons Martyn F, Krishnan Ghosh Yamuna, Klenerman David, Balasubramanian Shankar

机构信息

University Chemical Laboratories, UK.

出版信息

Biochemistry. 2006 Nov 7;45(44):13304-11. doi: 10.1021/bi061150a.

Abstract

Telomerase is the ribonucleoprotein reverse transcriptase involved in the maintenance of the telomeres, the termini of eukaryotic chromosomes. The RNA component of human telomerase (hTR) consists of 451 nucleotides with the 5' half folding into a highly conserved catalytic core comprising the template region and an adjacent pseudoknot domain (nucleotides 1-208). While the secondary structure of hTR is established, there is little understanding of its three-dimensional (3D) architecture. Here, we have used fluorescence resonance energy transfer (FRET) between fluorescently labelled peptide nucleic acids, hybridized to defined single stranded regions of full length hTR, to evaluate long-range distances. Using molecular modeling, the distance constraints derived by FRET were subsequently used, together with the known secondary structure, to generate a 3D model of the catalytic core of hTR. An overlay of a large set of models generated has provided a low-resolution structure (6.5-8.0 A) that can readily be refined as new structural information becomes available. A notable feature of the modeled structure is the positioning of the template adjacent to the pseudoknot, which brings a number of conserved nucleotides close in space.

摘要

端粒酶是一种核糖核蛋白逆转录酶,参与真核染色体末端端粒的维持。人端粒酶(hTR)的RNA组分由451个核苷酸组成,其5'端的一半折叠成一个高度保守的催化核心,包括模板区域和相邻的假结结构域(核苷酸1 - 208)。虽然hTR的二级结构已确定,但对其三维(3D)结构却知之甚少。在这里,我们利用荧光标记的肽核酸之间的荧光共振能量转移(FRET),使其与全长hTR的特定单链区域杂交,以评估长程距离。利用分子建模,随后将由FRET得出的距离限制与已知的二级结构一起用于生成hTR催化核心的3D模型。生成的大量模型的叠加提供了一个低分辨率结构(6.5 - 8.0埃),随着新的结构信息的获得,该结构可以很容易地得到完善。建模结构的一个显著特征是模板位于假结附近,这使得一些保守核苷酸在空间上靠近。

相似文献

1
Structural analysis of the catalytic core of human telomerase RNA by FRET and molecular modeling.
Biochemistry. 2006 Nov 7;45(44):13304-11. doi: 10.1021/bi061150a.
2
Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis.
RNA. 2017 Feb;23(2):175-188. doi: 10.1261/rna.058743.116. Epub 2016 Nov 15.
4
Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE.
RNA. 2015 Feb;21(2):254-61. doi: 10.1261/rna.048959.114. Epub 2014 Dec 15.
5
Folding heterogeneity in the essential human telomerase RNA three-way junction.
RNA. 2020 Dec;26(12):1787-1800. doi: 10.1261/rna.077255.120. Epub 2020 Aug 19.
6
Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5125-34. doi: 10.1073/pnas.1607411113. Epub 2016 Aug 16.
7
Human telomerase reverse transcriptase binds to a pre-organized hTR in vivo exposing its template.
Nucleic Acids Res. 2016 Jan 8;44(1):413-25. doi: 10.1093/nar/gkv1065. Epub 2015 Oct 19.
8
In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei.
Nucleic Acids Res. 2021 Dec 2;49(21):12445-12466. doi: 10.1093/nar/gkab1042.
9
Functional importance of telomerase pseudoknot revealed by single-molecule analysis.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20339-44. doi: 10.1073/pnas.1017686108. Epub 2011 May 13.
10
Analysis of the structure of human telomerase RNA in vivo.
Nucleic Acids Res. 2002 Feb 15;30(4):912-20. doi: 10.1093/nar/30.4.912.

引用本文的文献

2
RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias.
Biophys J. 2023 Aug 8;122(15):3089-3098. doi: 10.1016/j.bpj.2023.06.012. Epub 2023 Jun 24.
3
Evaluating RNA Structural Flexibility: Viruses Lead the Way.
Viruses. 2021 Oct 22;13(11):2130. doi: 10.3390/v13112130.
4
Oxoisoaporphines and Aporphines: Versatile Molecules with Anticancer Effects.
Molecules. 2019 Dec 27;25(1):108. doi: 10.3390/molecules25010108.
5
Progress in Human and Tetrahymena Telomerase Structure Determination.
Annu Rev Biophys. 2017 May 22;46:199-225. doi: 10.1146/annurev-biophys-062215-011140. Epub 2017 Mar 15.
6
Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis.
RNA. 2017 Feb;23(2):175-188. doi: 10.1261/rna.058743.116. Epub 2016 Nov 15.
7
Oxoisoaporphine as Potent Telomerase Inhibitor.
Molecules. 2016 Nov 14;21(11):1534. doi: 10.3390/molecules21111534.
9
Three-dimensional RNA structure of the major HIV-1 packaging signal region.
Structure. 2013 Jun 4;21(6):951-62. doi: 10.1016/j.str.2013.04.008. Epub 2013 May 16.

本文引用的文献

2
Functional analysis of the pseudoknot structure in human telomerase RNA.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8080-5; discussion 8077-9. doi: 10.1073/pnas.0502259102. Epub 2005 Apr 22.
4
The structure of an enzyme-activating fragment of human telomerase RNA.
RNA. 2005 Apr;11(4):394-403. doi: 10.1261/rna.7222505. Epub 2005 Feb 9.
5
Data-driven docking for the study of biomolecular complexes.
FEBS J. 2005 Jan;272(2):293-312. doi: 10.1111/j.1742-4658.2004.04473.x.
6
An emerging consensus for telomerase RNA structure.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14683-4. doi: 10.1073/pnas.0406204101. Epub 2004 Oct 4.
7
A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein.
Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14713-8. doi: 10.1073/pnas.0405879101. Epub 2004 Sep 15.
9
Template boundary definition in mammalian telomerase.
Genes Dev. 2003 Nov 15;17(22):2747-52. doi: 10.1101/gad.1140303.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验