Weigel Linda M, Donlan Rodney M, Shin Dong Hyeon, Jensen Bette, Clark Nancye C, McDougal Linda K, Zhu Wenming, Musser Kimberlee A, Thompson Jill, Kohlerschmidt Donna, Dumas Nellie, Limberger Ronald J, Patel Jean B
NCID/DHQP/ELB MS:G-08, Centers for Disease Control and Prevention, 1600 Clifton Road, N.E., Atlanta, GA 30333, USA.
Antimicrob Agents Chemother. 2007 Jan;51(1):231-8. doi: 10.1128/AAC.00576-06. Epub 2006 Oct 30.
Glycopeptides such as vancomycin are the treatment of choice for infections due to methicillin-resistant Staphylococcus aureus. This study describes the identification of high-level vancomycin-resistant S. aureus (VRSA) isolates in a polymicrobial biofilm within an indwelling nephrostomy tube in a patient in New York. S. aureus, Enterococcus faecalis, Enterococcus faecium, Micrococcus species, Morganella morganii, and Pseudomonas aeruginosa were isolated from the biofilm. For VRSA isolates, vancomycin MICs ranged from 32 to >128 microg/ml. VRSA isolates were also resistant to aminoglycosides, fluoroquinolones, macrolides, penicillin, and tetracycline but remained susceptible to chloramphenicol, linezolid, rifampin, and trimethoprim-sulfamethoxazole. The vanA gene was localized to a plasmid of approximately 100 kb in VRSA and E. faecium isolates from the biofilm. Plasmid analysis revealed that the VRSA isolate acquired the 100-kb E. faecium plasmid, which was then maintained without integration into the MRSA plasmid. The tetracycline resistance genes tet(U) and tet(S), not previously detected in S. aureus isolates, were identified in the VRSA isolates. Additional resistance elements in the VRSA isolate included a multiresistance gene cluster, ermB-aadE-sat4-aphA-3, msrA (macrolide efflux), and the bifunctional aminoglycoside resistance gene aac(6')-aph(2")-Ia. Multiple combinations of resistance genes among the various isolates of staphylococci and enterococci, including vanA, tet(S), and tet(U), illustrate the dynamic nature of gene acquisition and loss within and between bacterial species throughout the course of infection. The potential for interspecies transfer of antimicrobial resistance genes, including resistance to vancomycin, may be enhanced by the microenvironment of a biofilm.
糖肽类药物如万古霉素是治疗耐甲氧西林金黄色葡萄球菌感染的首选药物。本研究描述了在纽约一名患者留置的肾造瘘管内的多微生物生物膜中鉴定出高水平耐万古霉素金黄色葡萄球菌(VRSA)分离株。从生物膜中分离出了金黄色葡萄球菌、粪肠球菌、屎肠球菌、微球菌属、摩根摩根菌和铜绿假单胞菌。对于VRSA分离株,万古霉素的最低抑菌浓度(MIC)范围为32至>128μg/ml。VRSA分离株对氨基糖苷类、氟喹诺酮类、大环内酯类、青霉素和四环素也具有抗性,但对氯霉素、利奈唑胺、利福平和甲氧苄啶-磺胺甲恶唑仍敏感。vanA基因定位于生物膜中VRSA和屎肠球菌分离株中约100kb的质粒上。质粒分析表明,VRSA分离株获得了100kb的屎肠球菌质粒,该质粒随后得以维持,未整合到耐甲氧西林金黄色葡萄球菌质粒中。在VRSA分离株中鉴定出了以前在金黄色葡萄球菌分离株中未检测到的四环素抗性基因tet(U)和tet(S)。VRSA分离株中的其他抗性元件包括多抗性基因簇ermB-aadE-sat4-aphA-3、msrA(大环内酯外排)和双功能氨基糖苷抗性基因aac(6')-aph(2")-Ia。葡萄球菌和肠球菌的各种分离株之间抗性基因的多种组合,包括vanA、tet(S)和tet(U),说明了在整个感染过程中细菌种内和种间基因获得和丢失的动态性质。生物膜的微环境可能会增强包括对万古霉素抗性在内的抗菌抗性基因的种间转移潜力。