Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.
Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium.
PLoS One. 2018 Oct 26;13(10):e0206613. doi: 10.1371/journal.pone.0206613. eCollection 2018.
The positron emission tomography (PET) tracer [18F]MNI-659, selective for phosphodiesterase 10A (PDE10A), is a promising tool to assess an early biomarker for Huntington's disease (HD). In this study we investigated [18F]MNI-659 uptake in the Q175 mouse model of HD. Given the focal striatal distribution of PDE10A as well as the striatal atrophy occurring in HD, the spatial normalization approach applied during the processing could sensibly affect the accuracy of the regional quantification. We compared the use of a magnetic resonance images (MRI) template based on individual MRI over a PET and CT templates for regional quantification and spatial normalization of [18F]MNI-659 PET images. We performed [18F]MNI-659 PET imaging in six months old heterozygous (HET) Q175 mice and wild-type (WT) littermates, followed by X-ray computed tomography (CT) scan. In the same week, individual T2-weighted MRI were acquired. Spatial normalization and regional quantification of the PET/CT images was performed on MRI, [18F]MNI-659 PET, or CT template and compared to binding potential (BPND) using volumes manually delineated on the individual MR images. Striatal volume was significantly reduced in HET mice (-7.7%, p<0.0001) compared to WT littermates. [18F]MNI-659 BPND in striatum of HET animals was significantly reduced (p<0.0001) when compared to WT littermates using all three templates. However, BPND values were significantly higher for HET mice using the PET template compared to the MRI and CT ones (p<0.0001), with an overestimation at lower activities. On the other hand, the CT template spatial normalization introduced larger variability reducing the effect size. The PET and CT template-based approaches resulted in a lower accuracy in BPND quantification with consequent decrease in the detectability of disease effect. This study demonstrates that for [18F]MNI-659 brain PET imaging in mice the use of an MRI-based spatial normalization is recommended to achieve accurate quantification and fully exploit the detectability of disease effect.
正电子发射断层扫描(PET)示踪剂 [18F]MNI-659 对磷酸二酯酶 10A(PDE10A)具有选择性,是评估亨廷顿病(HD)早期生物标志物的有前途的工具。在这项研究中,我们研究了 HD 的 Q175 小鼠模型中 [18F]MNI-659 的摄取。鉴于 PDE10A 的局灶性纹状体分布以及 HD 中发生的纹状体萎缩,在处理过程中应用的空间归一化方法可能会合理地影响区域量化的准确性。我们比较了使用基于个体 MRI 的磁共振成像(MRI)模板与基于 PET 和 CT 模板进行 [18F]MNI-659 PET 图像的区域量化和空间归一化。我们对六个月大的杂合(HET)Q175 小鼠和野生型(WT)同窝仔进行了 [18F]MNI-659 PET 成像,随后进行了 X 射线计算机断层扫描(CT)扫描。在同一周内,采集了个体 T2 加权 MRI。在 MRI、[18F]MNI-659 PET 或 CT 模板上对 PET/CT 图像进行空间归一化和区域量化,并使用个体 MR 图像上手动勾画的体积与结合潜能(BPND)进行比较。与 WT 同窝仔相比,HET 小鼠的纹状体体积明显减小(-7.7%,p<0.0001)。与 WT 同窝仔相比,使用所有三个模板,HET 动物纹状体中的 [18F]MNI-659 BPND 均显著降低(p<0.0001)。然而,与 MRI 和 CT 模板相比,使用 PET 模板时,HET 小鼠的 BPND 值显著更高(p<0.0001),在较低的活性下存在高估。另一方面,CT 模板的空间归一化引入了更大的变异性,降低了效应大小。基于 PET 和 CT 模板的方法导致 BPND 量化的准确性降低,从而降低了疾病效应的检测能力。这项研究表明,对于 [18F]MNI-659 脑 PET 成像在小鼠中,建议使用基于 MRI 的空间归一化来实现准确的量化并充分利用疾病效应的检测能力。