Sluis-Cremer Nicolas, Sheen Chih-Wei, Zelina Shannon, Torres Pedro S Argoti, Parikh Urvi M, Mellors John W
Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, S817 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
Antimicrob Agents Chemother. 2007 Jan;51(1):48-53. doi: 10.1128/AAC.00683-06. Epub 2006 Nov 6.
The K70E mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has become more prevalent in clinical samples, particularly in isolates derived from patients for whom triple-nucleoside regimens that include tenofovir (TNV), abacavir, and lamivudine (3TC) failed. To elucidate the molecular mechanism by which this mutation confers resistance to these nucleoside RT inhibitors (NRTI), we conducted detailed biochemical analyses comparing wild-type (WT), K70E, and K65R HIV-1 RT. Pre-steady-state kinetic experiments demonstrate that the K70E mutation in HIV-1 RT allows the enzyme to discriminate between the natural deoxynucleoside triphosphate substrate and the NRTI triphosphate (NRTI-TP). Compared to the WT enzyme, K70E RT showed 2.1-, 2.3-, and 3.5-fold-higher levels of resistance toward TNV-diphosphate, carbovir-TP, and 3TC-TP, respectively. By comparison, K65R RT demonstrated 12.4-, 12.0-, and 13.1-fold-higher levels of resistance, respectively, toward the same analogs. NRTI-TP discrimination by the K70E (and K65R) mutation was primarily due to decreased rates of NRTI-TP incorporation and not to changes in analog binding affinity. The K65R and K70E mutations also profoundly impaired the ability of RT to excise 3'-azido-2',3'-dideoxythymidine monophosphate (AZT-MP) and other NRTI-MP from the 3' end of a chain-terminated primer. When introduced into an enzyme with the thymidine analog mutations (TAMs) M41L, L210W, and T215Y, the K70E mutation inhibited ATP-mediated excision of AZT-MP. Taken together, these findings indicate that the K70E mutation, like the K65R mutation, reduces susceptibility to NRTI by selectively decreasing NRTI-TP incorporation and is antagonistic to TAM-mediated nucleotide excision.
人类免疫缺陷病毒1型(HIV-1)逆转录酶(RT)中的K70E突变在临床样本中变得更加普遍,特别是在来自接受包含替诺福韦(TNV)、阿巴卡韦和拉米夫定(3TC)的三联核苷方案治疗失败的患者的分离株中。为了阐明这种突变赋予对这些核苷逆转录酶抑制剂(NRTI)耐药性的分子机制,我们进行了详细的生化分析,比较野生型(WT)、K70E和K65R HIV-1 RT。稳态前动力学实验表明,HIV-1 RT中的K70E突变使该酶能够区分天然脱氧核苷三磷酸底物和NRTI三磷酸(NRTI-TP)。与野生型酶相比,K70E RT对TNV-二磷酸、卡博韦-TP和3TC-TP的耐药水平分别高2.1倍、2.3倍和3.5倍。相比之下,K65R RT对相同类似物的耐药水平分别高12.4倍、12.0倍和13.1倍。K70E(和K65R)突变导致的NRTI-TP区分主要是由于NRTI-TP掺入速率降低,而不是类似物结合亲和力的变化。K65R和K70E突变也严重损害了RT从链终止引物的3'末端切除3'-叠氮-2',3'-双脱氧胸苷单磷酸(AZT-MP)和其他NRTI-MP的能力。当将K70E突变引入具有胸苷类似物突变(TAM)M41L、L210W和T2T5Y的酶中时,它会抑制ATP介导的AZT-MP切除。综上所述,这些发现表明,K70E突变与K65R突变一样,通过选择性降低NRTI-TP掺入来降低对NRTI的敏感性,并且与TAM介导的核苷酸切除相互拮抗。