Suppr超能文献

Modeling biological rhythms in failure time data.

作者信息

Elkum Naser B, Myles James D

机构信息

Department of Biostatistics, Epidemiology, and Scientific Computing, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia.

出版信息

J Circadian Rhythms. 2006 Nov 7;4:14. doi: 10.1186/1740-3391-4-14.

Abstract

BACKGROUND

The human body exhibits a variety of biological rhythms. There are patterns that correspond, among others, to the daily wake/sleep cycle, a yearly seasonal cycle and, in women, the menstrual cycle. Sine/cosine functions are often used to model biological patterns for continuous data, but this model is not appropriate for analysis of biological rhythms in failure time data.

METHODS

We adapt the cosinor method to the proportional hazards model and present a method to provide an estimate and confidence interval of the time when the minimum hazard is achieved. We then apply this model to data taken from a clinical trial of adjuvant of pre-menopausal breast cancer patients.

RESULTS

The application of this technique to the breast cancer data revealed that the optimal day for pre-resection incisional or excisional biopsy of 28-day cycle (i. e. the day associated with the lowest recurrence rate) is day 8 with 95% confidence interval of 4-12 days. We found that older age, fewer positive nodes, smaller tumor size, and experimental treatment were predictive of longer relapse-free survival.

CONCLUSION

In this paper we have described a method for modeling failure time data with an underlying biological rhythm. The advantage of adapting a cosinor model to proportional hazards model is its ability to model right censored data. We have presented a method to provide an estimate and confidence interval of the day in the menstrual cycle where the minimum hazard is achieved. This method is not limited to breast cancer data, and may be applied to any biological rhythms linked to right censored data.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验