Allen Elena A, Freeman Ralph D
Helen Wills Neuroscience Institute, Group in Vision Science, and School of Optometry, University of California, Berkeley, Berkeley, California 94720-2020, USA.
J Neurosci. 2006 Nov 8;26(45):11763-74. doi: 10.1523/JNEUROSCI.3297-06.2006.
A variety of studies in the visual system demonstrate that coarse spatial features are processed before those of fine detail. This aspect of visual processing is assumed to originate in striate cortex, where single cells exhibit a refinement of spatial frequency tuning over the duration of their response. However, in early visual pathways, well known temporal differences are present between center and surround components of receptive fields. Specifically, response latency of the receptive field center is relatively shorter than that of the surround. This spatiotemporal inseparability could provide the basis of coarse-to-fine dynamics in early and subsequent visual areas. We have investigated this possibility with three separate approaches. First, we predict spatial-frequency tuning dynamics from the spatiotemporal receptive fields of 118 cells in the lateral geniculate nucleus (LGN). Second, we compare these linear predictions to measurements of tuning dynamics obtained with a subspace reverse correlation technique. We find that tuning evolves dramatically in thalamic cells, and that tuning changes are generally consistent with the temporal differences between spatiotemporal receptive field components. Third, we use a model to examine how different sources of dynamic input from early visual pathways can affect tuning in cortical cells. We identify two mechanisms capable of producing substantial dynamics at the cortical level: (1) the center-surround delay in individual LGN neurons, and (2) convergent input from multiple cells with different receptive field sizes and response latencies. Overall, our simulations suggest that coarse-to-fine tuning in the visual cortex can be generated completely by a feedforward process.
视觉系统中的各种研究表明,粗糙的空间特征比精细细节的特征先得到处理。视觉处理的这一方面被认为起源于纹状皮层,在那里单个细胞在其反应持续时间内表现出空间频率调谐的细化。然而,在早期视觉通路中,感受野的中心和周边成分之间存在众所周知的时间差异。具体而言,感受野中心的反应潜伏期相对短于周边的反应潜伏期。这种时空不可分离性可能为早期及后续视觉区域中从粗糙到精细的动态变化提供基础。我们用三种不同的方法研究了这种可能性。第一,我们从外侧膝状体核(LGN)中118个细胞的时空感受野预测空间频率调谐动态。第二,我们将这些线性预测与用子空间反向相关技术获得的调谐动态测量结果进行比较。我们发现丘脑细胞中的调谐显著变化,并且调谐变化通常与时空感受野成分之间的时间差异一致。第三,我们使用一个模型来研究早期视觉通路中不同动态输入源如何影响皮层细胞的调谐。我们确定了两种能够在皮层水平产生显著动态变化的机制:(1)单个LGN神经元中的中心 - 周边延迟,以及(2)来自具有不同感受野大小和反应潜伏期的多个细胞的汇聚输入。总体而言,我们的模拟表明视觉皮层中从粗糙到精细的调谐可以完全由前馈过程产生。