Suppr超能文献

整群随机多中心试验中不等与相等整群大小的相对效率

Relative efficiency of unequal versus equal cluster sizes in cluster randomized and multicentre trials.

作者信息

van Breukelen Gerard J P, Candel Math J J M, Berger Martijn P F

机构信息

Department of Methodology and Statistics, Maastricht University, Maastricht, The Netherlands.

出版信息

Stat Med. 2007 Jun 15;26(13):2589-603. doi: 10.1002/sim.2740.

Abstract

Cluster randomized and multicentre trials evaluate the effect of a treatment on persons nested within clusters, for instance, patients within clinics or pupils within schools. Optimal sample sizes at the cluster (centre) and person level have been derived under the restrictive assumption of equal sample sizes per cluster. This paper addresses the relative efficiency of unequal versus equal cluster sizes in case of cluster randomization and person randomization within clusters. Starting from maximum likelihood parameter estimation, the relative efficiency is investigated numerically for a range of cluster size distributions. An approximate formula is presented for computing the relative efficiency as a function of the mean and variance of cluster size and the intraclass correlation, which can be used for adjusting the sample size. The accuracy of this formula is checked against the numerical results and found to be quite good. It is concluded that the loss of efficiency due to variation of cluster sizes rarely exceeds 10 per cent and can be compensated by sampling 11 per cent more clusters.

摘要

整群随机多中心试验评估治疗方法对嵌套在群组中的个体的效果,例如诊所内的患者或学校内的学生。在每个群组样本量相等这一严格假设下,已得出群组(中心)和个体层面的最优样本量。本文探讨了整群随机化以及群组内个体随机化情况下,不等群组规模与等群组规模的相对效率。从最大似然参数估计出发,针对一系列群组规模分布,对相对效率进行了数值研究。给出了一个近似公式,用于计算作为群组规模均值、方差和组内相关函数的相对效率,该公式可用于调整样本量。将此公式的准确性与数值结果进行核对,发现相当不错。得出的结论是,由于群组规模变化导致的效率损失很少超过10%,并且可以通过多抽取11%的群组来弥补。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验