Suppr超能文献

群组随机对照试验的设计与分析:在加性风险混合模型下的生存时间结局。

Design and analysis of cluster randomized trials with time-to-event outcomes under the additive hazards mixed model.

机构信息

Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA.

Yale Center for Analytical Sciences, Yale University School of Public Health, New Haven, Connecticut, USA.

出版信息

Stat Med. 2022 Oct 30;41(24):4860-4885. doi: 10.1002/sim.9541. Epub 2022 Jul 31.

Abstract

A primary focus of current methods for cluster randomized trials (CRTs) has been for continuous, binary, and count outcomes, with relatively less attention given to right-censored, time-to-event outcomes. In this article, we detail considerations for sample size requirement and statistical inference in CRTs with time-to-event outcomes when the intervention effect parameter is specified through the additive hazards mixed model (AHMM), which includes a frailty term to explicitly account for the dependency between the failure times. First, we discuss improved inference for the treatment effect parameter via bias-corrected sandwich variance estimators and randomization-based test under AHMM, addressing potential small-sample biases in CRTs. Next, we derive a new sample size formula for AHMM analysis of CRTs accommodating both equal and unequal cluster sizes. When the cluster sizes vary, our sample size formula depends on the mean and coefficient of variation of cluster sizes, based on which we articulate the impact of cluster size variation in CRTs with time-to-event outcomes. Furthermore, we obtain the insight that the classical variance inflation factor for CRTs with a non-censored outcome can in fact apply to CRTs with a time-to-event outcome, providing that an appropriate definition of the intraclass correlation coefficient is considered under AHMM. Simulation studies are carried out to illustrate key design and analysis considerations in CRTs with a small to moderate number of clusters. The proposed sample size procedure and analytical methods are further illustrated using the context of the STrategies to Reduce Injuries and Develop Confidence in Elders CRT.

摘要

目前群组随机试验(CRT)的主要关注点一直是连续、二分类和计数结果,而对右删失、生存时间结果的关注相对较少。在本文中,我们详细讨论了当干预效果参数通过加性风险混合模型(AHMM)指定时,具有生存时间结果的 CRT 的样本量要求和统计推断,该模型包含一个脆弱性项,以明确考虑失败时间之间的依赖性。首先,我们讨论了通过 AHMM 中的偏差校正夹层方差估计量和基于随机化的检验来改进对治疗效果参数的推断,解决 CRT 中潜在的小样本偏差问题。接下来,我们推导出了一种新的用于 AHMM 分析 CRT 的样本量公式,同时考虑了相等和不相等的群组大小。当群组大小不同时,我们的样本量公式取决于群组大小的均值和变异系数,在此基础上,我们阐明了生存时间结果的 CRT 中群组大小变化的影响。此外,我们得到的启示是,对于无删失结果的 CRT,经典的方差膨胀因子实际上可以适用于生存时间结果的 CRT,前提是在 AHMM 下考虑了适当的组内相关系数定义。模拟研究说明了具有少量到中等数量群组的 CRT 的关键设计和分析考虑因素。进一步使用 STrategies to Reduce Injuries and Develop Confidence in Elders CRT 的背景来说明建议的样本量程序和分析方法。

相似文献

1
Design and analysis of cluster randomized trials with time-to-event outcomes under the additive hazards mixed model.
Stat Med. 2022 Oct 30;41(24):4860-4885. doi: 10.1002/sim.9541. Epub 2022 Jul 31.
2
Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials.
Biom J. 2023 Mar;65(3):e2200113. doi: 10.1002/bimj.202200113. Epub 2022 Dec 25.
3
Relative efficiency of equal versus unequal cluster sizes in cluster randomized trials with a small number of clusters.
J Biopharm Stat. 2021 Mar;31(2):191-206. doi: 10.1080/10543406.2020.1814795. Epub 2020 Sep 24.
4
Small sample performance of bias-corrected sandwich estimators for cluster-randomized trials with binary outcomes.
Stat Med. 2015 Jan 30;34(2):281-96. doi: 10.1002/sim.6344. Epub 2014 Oct 24.
5
Accounting for unequal cluster sizes in designing cluster randomized trials to detect treatment effect heterogeneity.
Stat Med. 2022 Apr 15;41(8):1376-1396. doi: 10.1002/sim.9283. Epub 2021 Dec 19.
8
Sample size calculation in three-level cluster randomized trials using generalized estimating equation models.
Stat Med. 2020 Oct 30;39(24):3347-3372. doi: 10.1002/sim.8670. Epub 2020 Jul 28.
10
Power calculation for cross-sectional stepped wedge cluster randomized trials with variable cluster sizes.
Biometrics. 2020 Sep;76(3):951-962. doi: 10.1111/biom.13164. Epub 2019 Nov 14.

引用本文的文献

2
The impact of co-housing on murine aging studies.
Geroscience. 2025 Jan 14. doi: 10.1007/s11357-024-01480-x.
3
Quantifying the Impact of Co-Housing on Murine Aging Studies.
bioRxiv. 2024 Aug 7:2024.08.06.606373. doi: 10.1101/2024.08.06.606373.
4
Permutation-based multiple testing corrections for -values and confidence intervals for cluster randomized trials.
Stat Med. 2023 Sep 20;42(21):3786-3803. doi: 10.1002/sim.9831. Epub 2023 Jun 21.
5
Improving sandwich variance estimation for marginal Cox analysis of cluster randomized trials.
Biom J. 2023 Mar;65(3):e2200113. doi: 10.1002/bimj.202200113. Epub 2022 Dec 25.
6
Simulating time-to-event data subject to competing risks and clustering: A review and synthesis.
Stat Methods Med Res. 2023 Feb;32(2):305-333. doi: 10.1177/09622802221136067. Epub 2022 Nov 22.

本文引用的文献

1
xtgeebcv: A command for bias-corrected sandwich variance estimation for GEE analyses of cluster randomized trials.
Stata J. 2020 Jun;20(2):363-381. doi: 10.1177/1536867x20931001. Epub 2020 Jun 19.
2
A comparison of analytical strategies for cluster randomized trials with survival outcomes in the presence of competing risks.
Stat Methods Med Res. 2022 Jul;31(7):1224-1241. doi: 10.1177/09622802221085080. Epub 2022 Mar 15.
3
Finite-sample adjustments in variance estimators for clustered competing risks regression.
Stat Med. 2022 Jun 30;41(14):2645-2664. doi: 10.1002/sim.9375. Epub 2022 Mar 14.
4
Constrained randomization and statistical inference for multi-arm parallel cluster randomized controlled trials.
Stat Med. 2022 May 10;41(10):1862-1883. doi: 10.1002/sim.9333. Epub 2022 Feb 10.
5
Power considerations for generalized estimating equations analyses of four-level cluster randomized trials.
Biom J. 2022 Apr;64(4):663-680. doi: 10.1002/bimj.202100081. Epub 2021 Dec 13.
6
Sample size estimation for modified Poisson analysis of cluster randomized trials with a binary outcome.
Stat Methods Med Res. 2021 May;30(5):1288-1305. doi: 10.1177/0962280221990415. Epub 2021 Apr 7.
7
Sample size and power considerations for cluster randomized trials with count outcomes subject to right truncation.
Biom J. 2021 Jun;63(5):1052-1071. doi: 10.1002/bimj.202000230. Epub 2021 Mar 10.
8
Methodological review showed that time-to-event outcomes are often inadequately handled in cluster randomized trials.
J Clin Epidemiol. 2021 Jun;134:125-137. doi: 10.1016/j.jclinepi.2021.02.004. Epub 2021 Feb 10.
9
Sample size calculation for cluster randomization trials with a time-to-event endpoint.
Stat Med. 2020 Nov 10;39(25):3608-3623. doi: 10.1002/sim.8683. Epub 2020 Jul 30.
10
Estimating Risk Ratios and Risk Differences: Alternatives to Odds Ratios.
JAMA. 2020 Sep 15;324(11):1098-1099. doi: 10.1001/jama.2020.12698.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验