Suppr超能文献

二分类结局的群组随机对照试验且群组数量较少:个体水平分析与群组水平分析方法的比较。

Cluster randomised trials with a binary outcome and a small number of clusters: comparison of individual and cluster level analysis method.

机构信息

Department of Infectious Disease, London School of Hygiene & Tropical Medicine, London, UK.

Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.

出版信息

BMC Med Res Methodol. 2022 Aug 12;22(1):222. doi: 10.1186/s12874-022-01699-2.

Abstract

BACKGROUND

Cluster randomised trials (CRTs) are often designed with a small number of clusters, but it is not clear which analysis methods are optimal when the outcome is binary. This simulation study aimed to determine (i) whether cluster-level analysis (CL), generalised linear mixed models (GLMM), and generalised estimating equations with sandwich variance (GEE) approaches maintain acceptable type-one error including the impact of non-normality of cluster effects and low prevalence, and if so (ii) which methods have the greatest power. We simulated CRTs with 8-30 clusters, altering the cluster-size, outcome prevalence, intracluster correlation coefficient, and cluster effect distribution. We analysed each dataset with weighted and unweighted CL; GLMM with adaptive quadrature and restricted pseudolikelihood; GEE with Kauermann-and-Carroll and Fay-and-Graubard sandwich variance using independent and exchangeable working correlation matrices. P-values were from a t-distribution with degrees of freedom (DoF) as clusters minus cluster-level parameters; GLMM pseudolikelihood also used Satterthwaite and Kenward-Roger DoF.

RESULTS

Unweighted CL, GLMM pseudolikelihood, and Fay-and-Graubard GEE with independent or exchangeable working correlation matrix controlled type-one error in > 97% scenarios with clusters minus parameters DoF. Cluster-effect distribution and prevalence of outcome did not usually affect analysis method performance. GEE had the least power. With 20-30 clusters, GLMM had greater power than CL with varying cluster-size but similar power otherwise; with fewer clusters, GLMM had lower power with common cluster-size, similar power with medium variation, and greater power with large variation in cluster-size.

CONCLUSION

We recommend that CRTs with ≤ 30 clusters and a binary outcome use an unweighted CL or restricted pseudolikelihood GLMM both with DoF clusters minus cluster-level parameters.

摘要

背景

集群随机对照试验(CRTs)通常设计为少数几个集群,但当结果为二分类时,尚不清楚哪种分析方法最优。本模拟研究旨在确定:(i)当集群效应和低流行率的非正态分布对集群水平分析(CL)、广义线性混合模型(GLMM)和具有三明治方差的广义估计方程(GEE)方法的第一类错误(包括)有影响时,这些方法是否仍能保持可接受的水平;如果是,(ii)哪些方法具有最大的功效。我们模拟了具有 8-30 个集群的 CRTs,改变了集群大小、结局的流行率、集群内相关系数和集群效应分布。我们对每个数据集进行了加权和未加权的 CL 分析;GLMM 分析采用自适应求积和受限伪似然法;GEE 分析采用 Kauermann-and-Carroll 和 Fay-and-Graubard 三明治方差法,使用独立和可交换的工作相关矩阵。P 值来自自由度(DoF)为集群减集群水平参数的 t 分布;GLMM 伪似然法还使用 Satterthwaite 和 Kenward-Roger DoF。

结果

未加权的 CL、GLMM 伪似然法和 Fay-and-Graubard GEE 与独立或可交换的工作相关矩阵控制着具有集群减参数自由度的第一类错误在 97%以上的情况下。集群效应分布和结局的流行率通常不会影响分析方法的性能。GEE 的功效最小。在具有 20-30 个集群的情况下,GLMM 的功效大于具有不同集群大小的 CL,但在其他情况下,GLMM 的功效则相同;在具有较少集群的情况下,GLMM 在具有常见集群大小的情况下具有较低的功效,在具有中等变异的情况下具有相似的功效,而在具有较大集群大小变异的情况下具有更高的功效。

结论

我们建议,具有≤30 个集群和二分类结局的 CRTs 采用未加权的 CL 或具有集群减集群水平参数自由度的受限伪似然 GLMM。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377d/9375419/a69027f70ec4/12874_2022_1699_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验