Lange Eva, Gröpl Clemens, Reinert Knut, Kohlbacher Oliver, Hildebrandt Andreas
Institute of Computer Science, Free University of Berlin Takustr. 9, 14195 Berlin, Germany.
Pac Symp Biocomput. 2006:243-54.
A new peak picking algorithm for the analysis of mass spectrometric (MS) data is presented. It is independent of the underlying machine or ionization method, and is able to resolve highly convoluted and asymmetric signals. The method uses the multiscale nature of spectrometric data by first detecting the mass peaks in the wavelet-transformed signal before a given asymmetric peak function is fitted to the raw data. In an optional third stage, the resulting fit can be further improved using techniques from nonlinear optimization. In contrast to currently established techniques (e.g. SNAP, Apex) our algorithm is able to separate overlapping peaks of multiply charged peptides in ESI-MS data of low resolution. Its improved accuracy with respect to peak positions makes it a valuable preprocessing method for MS-based identification and quantification experiments. The method has been validated on a number of different annotated test cases, where it compares favorably in both runtime and accuracy with currently established techniques. An implementation of the algorithm is freely available in our open source framework OpenMS.
提出了一种用于质谱(MS)数据分析的新的峰检测算法。它独立于基础仪器或电离方法,并且能够解析高度卷积和不对称的信号。该方法利用光谱数据的多尺度特性,首先在小波变换后的信号中检测质量峰,然后将给定的不对称峰函数拟合到原始数据。在可选的第三阶段,可以使用非线性优化技术进一步改善所得的拟合结果。与当前已确立的技术(例如SNAP、Apex)相比,我们的算法能够在低分辨率的电喷雾电离质谱(ESI-MS)数据中分离多电荷肽的重叠峰。其在峰位置方面提高的准确性使其成为基于质谱的鉴定和定量实验的有价值的预处理方法。该方法已在许多不同的带注释测试案例上得到验证,在运行时间和准确性方面与当前已确立的技术相比都具有优势。该算法的一个实现版本可在我们的开源框架OpenMS中免费获得。