Luo C H, Rudy Y
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106.
Circ Res. 1991 Jun;68(6):1501-26. doi: 10.1161/01.res.68.6.1501.
A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. The fast sodium current, INa, is characterized by fast upstroke velocity (Vmax = 400 V/sec) and slow recovery from inactivation. The time-independent potassium current, IK1, includes a negative-slope phase and displays significant crossover phenomenon as [K]o is varied. The time-dependent potassium current, IK, shows only a minimal degree of crossover. A novel potassium current that activates at plateau potentials is included in the model. The simulated action potential duplicates the experimentally observed effects of changes in [K]o on action potential duration and rest potential. Physiological simulations focus on the interaction between depolarization and repolarization (i.e., premature stimulation). Results demonstrate the importance of the slow recovery of INa in determining the response of the cell. Simulated responses to periodic stimulation include monotonic Wenckebach patterns and alternans at normal [K]o, whereas at low [K]o nonmonotonic Wenckebach periodicities, aperiodic patterns, and enhanced supernormal excitability that results in unstable responses ("chaotic activity") are observed. The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics.
介绍了一种哺乳动物心室细胞膜动作电位的数学模型。该模型尽可能基于最近的单细胞和单通道数据,并考虑了细胞外钾离子浓度[K]o变化的可能性。快速钠电流INa的特征是上升速度快(Vmax = 400 V/秒)且失活后恢复缓慢。非时变钾电流IK1包括负斜率相,并且随着[K]o的变化表现出明显的交叉现象。时变钾电流IK仅表现出最小程度的交叉。模型中包含一种在平台期电位激活的新型钾电流。模拟的动作电位复制了实验观察到的[K]o变化对动作电位持续时间和静息电位的影响。生理模拟聚焦于去极化和复极化之间的相互作用(即过早刺激)。结果表明INa的缓慢恢复在决定细胞反应方面的重要性。对周期性刺激的模拟反应在正常[K]o时包括单调的文氏周期和交替现象,而在低[K]o时观察到非单调的文氏周期性、非周期性模式以及导致不稳定反应(“混沌活动”)的增强超常兴奋性。这些结果与最近的实验观察结果一致,并且模型模拟将这些现象与潜在的离子通道动力学联系起来。