Suppr超能文献

在近期驯化过程中水稻转座元件的显著扩增。

Dramatic amplification of a rice transposable element during recent domestication.

作者信息

Naito Ken, Cho Eunyoung, Yang Guojun, Campbell Matthew A, Yano Kentaro, Okumoto Yutaka, Tanisaka Takatoshi, Wessler Susan R

机构信息

Department of Plant Biology, University of Georgia, Athens, GA 30602, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17620-5. doi: 10.1073/pnas.0605421103. Epub 2006 Nov 13.

Abstract

Despite the prevalence of transposable elements in the genomes of higher eukaryotes, what is virtually unknown is how they amplify to very high copy numbers without killing their host. Here, we report the discovery of rice strains where a miniature inverted-repeat transposable element (mPing) has amplified from approximately 50 to approximately 1,000 copies in four rice strains. We characterized 280 of the insertions and found that 70% were within 5 kb of coding regions but that insertions into exons and introns were significantly underrepresented. Further analyses of gene expression and transposable-element activity demonstrate that the ability of mPing to attain high copy numbers is because of three factors: (i) the rapid selection against detrimental insertions, (ii) the neutral or minimal effect of the remaining insertions on gene transcription, and (iii) the continued mobility of mPingelements in strains that already have > 1,000 copies. The rapid increase in mPing copy number documented in this study represents a potentially valuable source of population diversity in self-fertilizing plants like rice.

摘要

尽管转座元件在高等真核生物基因组中普遍存在,但实际上人们对它们如何在不杀死宿主的情况下扩增到非常高的拷贝数却知之甚少。在此,我们报告了水稻品系的一项发现,其中一个微型反向重复转座元件(mPing)在四个水稻品系中从大约50个拷贝扩增到了大约1000个拷贝。我们对280个插入位点进行了特征分析,发现70%的插入位点位于编码区的5kb范围内,但外显子和内含子中的插入位点明显较少。对基因表达和转座元件活性的进一步分析表明,mPing能够达到高拷贝数的能力归因于三个因素:(i)对有害插入的快速选择,(ii)其余插入对基因转录的中性或最小影响,以及(iii)mPing元件在已经有超过1000个拷贝的品系中持续的移动性。本研究中记录的mPing拷贝数的快速增加代表了像水稻这样的自花授粉植物中种群多样性的一个潜在有价值的来源。

相似文献

1
Dramatic amplification of a rice transposable element during recent domestication.
Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17620-5. doi: 10.1073/pnas.0605421103. Epub 2006 Nov 13.
2
Tracking the genome-wide outcomes of a transposable element burst over decades of amplification.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):E10550-E10559. doi: 10.1073/pnas.1716459114. Epub 2017 Nov 20.
3
Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana.
Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10962-7. doi: 10.1073/pnas.0702080104. Epub 2007 Jun 19.
4
Genomic diversity generated by a transposable element burst in a rice recombinant inbred population.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26288-26297. doi: 10.1073/pnas.2015736117. Epub 2020 Oct 5.
5
Early embryogenesis-specific expression of the rice transposon Ping enhances amplification of the MITE mPing.
PLoS Genet. 2014 Jun 12;10(6):e1004396. doi: 10.1371/journal.pgen.1004396. eCollection 2014 Jun.
7
An active DNA transposon family in rice.
Nature. 2003 Jan 9;421(6919):163-7. doi: 10.1038/nature01214.

引用本文的文献

3
Combined analysis of transposable elements and structural variation in maize genomes reveals genome contraction outpaces expansion.
PLoS Genet. 2023 Dec 22;19(12):e1011086. doi: 10.1371/journal.pgen.1011086. eCollection 2023 Dec.
4
Toward Transgene-Free Transposon-Mediated Biological Mutagenesis for Plant Breeding.
Int J Mol Sci. 2023 Dec 2;24(23):17054. doi: 10.3390/ijms242317054.
5
Transposase expression, element abundance, element size, and DNA repair determine the mobility and heritability of // transposable elements.
Front Cell Dev Biol. 2023 Jun 9;11:1184046. doi: 10.3389/fcell.2023.1184046. eCollection 2023.
7
Time-ordering japonica/geng genomes analysis indicates the importance of large structural variants in rice breeding.
Plant Biotechnol J. 2023 Jan;21(1):202-218. doi: 10.1111/pbi.13938. Epub 2022 Oct 21.
9
Transposons and non-coding regions drive the intrafamily differences of genome size in insects.
iScience. 2022 Aug 4;25(9):104873. doi: 10.1016/j.isci.2022.104873. eCollection 2022 Sep 16.

本文引用的文献

1
The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D741-4. doi: 10.1093/nar/gkj094.
2
Diverse origins of waxy foxtail millet crops in East and Southeast Asia mediated by multiple transposable element insertions.
Mol Genet Genomics. 2005 Sep;274(2):131-40. doi: 10.1007/s00438-005-0013-8. Epub 2005 Oct 11.
3
SINEs and LINEs: symbionts of eukaryotic genomes with a common tail.
Cytogenet Genome Res. 2005;110(1-4):475-90. doi: 10.1159/000084981.
4
The origin and behavior of mutable loci in maize.
Proc Natl Acad Sci U S A. 1950 Jun;36(6):344-55. doi: 10.1073/pnas.36.6.344.
5
MITE display.
Methods Mol Biol. 2004;260:175-88. doi: 10.1385/1-59259-755-6:175.
7
Chromosome organization and genic expression.
Cold Spring Harb Symp Quant Biol. 1951;16:13-47. doi: 10.1101/sqb.1951.016.01.004.
8
Mobilization of a transposon in the rice genome.
Nature. 2003 Jan 9;421(6919):170-2. doi: 10.1038/nature01219.
9
The plant MITE mPing is mobilized in anther culture.
Nature. 2003 Jan 9;421(6919):167-70. doi: 10.1038/nature01218.
10
An active DNA transposon family in rice.
Nature. 2003 Jan 9;421(6919):163-7. doi: 10.1038/nature01214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验